若90°<β<α<135°,則α-β的范圍是________,α+β的范圍是________.

答案:(0°,45°),(180°,270°).
解析:

  解析:∵90°<β<α<135°,

  則有90°<α<135°,①

  90°<β<135°,②

  0°<α-β,③

 。135°<-β<-90°,④

  由①、③、④得0°<α-β<45°,

  由①、②得180°<α+β<270°.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,且AD∥BC,∠ABC=∠PAD=90°,側(cè)面PAD⊥底面ABCD,若PA=AB=BC=
12
,AD=1.
(I)求證:CD⊥平面PAC
(II)側(cè)棱PA上是否存在點(diǎn)E,使得BE∥平面PCD?若存在,指出點(diǎn)E的位置,并證明,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•廣州二模)如圖所示,在直三棱柱ABC-A1B1C1中,∠ACB=90°,AB=2,BC=1,AA1=
3

(Ⅰ)證明:A1C⊥平面AB1C1;
(Ⅱ)若D是棱CC1的中點(diǎn),在棱AB上是否存在一點(diǎn)E,使DE∥平面AB1C1,試證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•寧波模擬)如圖,△ABC中,∠B=90°,AB=
2
,BC=1,D、 E
兩點(diǎn)分別在線段AB、AC上,滿足
AD
AB
=
AE
AC
=λ,λ∈(0,1)
.現(xiàn)將△ABC沿DE折成直二面角A-DE-B.
(1)求證:當(dāng)λ=
1
2
時(shí),面ADC⊥面ABE;
(2)當(dāng)λ∈(0,1)時(shí),直線AD與平面ABE所成角能否等于
π
6
?若能,求出λ的值;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•濟(jì)南二模)山東省《體育高考方案》于2012年2月份公布,方案要求以學(xué)校為單位進(jìn)行體育測(cè)試,某校對(duì)高三1班同學(xué)按照高考測(cè)試項(xiàng)目按百分制進(jìn)行了預(yù)備測(cè)試,并對(duì)50分以上的成績(jī)進(jìn)行統(tǒng)計(jì),其頻率分布直方圖如圖所示,若90~100分?jǐn)?shù)段的人數(shù)為2人.
(Ⅰ)請(qǐng)估計(jì)一下這組數(shù)據(jù)的平均數(shù)M;
(Ⅱ)現(xiàn)根據(jù)初賽成績(jī)從第一組和第五組(從低分段到高分段依次為第一組、第二組、…、第五組)中任意選出兩人,形成一個(gè)小組.若選出的兩人成績(jī)差大于20,則稱這兩人為“幫扶組”,試求選出的兩人為“幫扶組”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•閘北區(qū)一模)如圖,在四棱錐P-ABCD中,底面ABCD是菱形,PA⊥平面ABCD,AB=1,PA•AC=1,∠ABC=θ(0°<θ≤90°).
(1)若θ=90°,E為PC的中點(diǎn),求異面直線PA與BE所成角的大;
(2)試求四棱錐P-ABCD的體積V的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案