設A={x∈Z||x|<6},B={1,2,3},C={3,4,5,},求:
(1)B∩C; (2)B∪C; (3)A∪(B∩C);(4)A∩∁A(B∪C)
考點:交、并、補集的混合運算
專題:集合
分析:(1)由題意和交集的運算直接求出B∩C;
(2)由題意和并集的運算直接求出B∪C;
(3)根據(jù)題意求出集合A并用列舉法表示,再由并集的運算求出A∪(B∩C);
(4)由補集的運算先求出∁A(B∪C),再由交集的運算直接求出A∩∁A(B∪C).
解答: 解:(1)因為B={1,2,3},C={3,4,5,},所以B∩C={3};
(2)因為B={1,2,3},C={3,4,5,},所以B∪C={1,2,3,4,5};
(3)由題意得,A={x∈Z||x|<6}={-5,-4,-3,-2,-1,0,1,2,3,4,5},
所以A∪(B∩C)={-5,-4,-3,-2,-1,0,1,2,3,4,5};
(4)由(2)得,∁A(B∪C)={-5,-4,-3,-2,-1,0},
所以A∩∁A(B∪C)={-5,-4,-3,-2,-1,0}.
點評:本題考查交、并、補集的混合運算,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

某城市缺水問題比較突出,為了制定節(jié)水管理辦法,對全市居民某年的月均用水量進行了抽樣調(diào)查,其中n位居民的月均用水量分別為x1,…,xn(單位:噸).根據(jù)圖所示的程序框圖,若n=2,且x1,x2分別為1,2,則輸出的結(jié)果s為.( 。
A、1
B、
3
2
C、
1
4
D、
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設F是橢圓E:
x2
a2
+
y2
b2
=1,(a>b>0)的左焦點,直線l方程為x=-
a2
c
(其中a為橢圓的長半軸長,c為半焦距),設直線l與x軸交于P點,MN為橢圓E的長軸,已知|MN|=8,且|PM|=2|MF|.
(1)求橢圓E的標準方程;
(2)過點P作直線m與橢圓E交于A,B兩點,求證:∠AFM=∠BFN;
(3)在(2)的條件下,求三角形△ABF面積的最大值及此時直線m的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題正確的是(  )
A、若向量
a
與向量
b
的方向相反,則稱向量
a
為向量
b
的相反向量
B、若向量
a
與向量
b
的模相等,則稱向量
a
與向量
b
為相等向量
C、若向量
a
的模等于0,則向量
a
等于0
D、若向量
a
是單位向量,則向量
a
的模等于1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

廣東某六所名校聯(lián)盟辦學,他們不但注重學生的學習成績的提高,更重視學生的綜合素質(zhì)的提高;六校從各校中抽出部分學生組成甲、乙、丙、丁 4個小組進行綜合素質(zhì)過關測試,設4個小組中:甲、乙、丙、丁組在測試中能夠過關的概率分別為0.6,0.5,0.5,0.4,各組是否過關是相互獨立的.
(1)求測試中至少3個小組過關的概率;
(2)X表示測試中能夠過關的組數(shù),求X的數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}公差不為零,前n項和為Sn,且a1、a2、a5成等比數(shù)列,S5=3a4+4.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設數(shù)列{bn}滿足bn=an•(
1
3
)n
,求數(shù)列{bn}前n項和為Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知在△ABC中,三條邊a,b、c所對的角分別為A、B,C,向量
m
=(sinA,cosA),
n
=(cosB,sinB),且滿足
m
n
=sin2C.
(1)求角C的大小;
(2)若sinA,sinC,sinB成等比數(shù)列,且
AC
•(
AB
-
AC
)=-8,求邊c的值并求△ABC外接圓的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正方體ABCD-A1B1C1D1的棱長為2a,點E為棱CC1的中點.
(Ⅰ)求證:A1E⊥BD;
(Ⅱ)求平面A1BD⊥平面EBD;
(Ⅲ)求四面體A1-BDE的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列四個命題:
①空集是任何集合的子集
②已知f(x)=x2+bx+c是偶函數(shù),則b=0
③若函數(shù)f(x)的定義域為[0,2],則函數(shù)f(2x)的定義域為[0,4];
④已知集合P={a,b},Q={-1,0,1}則映射f:P→Q中滿足f(b)=0的映射共有3個.其中正確命題的序號是
 
.(填上所有正確命題的序號)

查看答案和解析>>

同步練習冊答案