【題目】三棱柱中,的中點,點在側(cè)棱上,平面

(1) 證明:的中點;

(2) 設(shè),四邊形為邊長為4正方形,四邊形為矩形,且異面直線所成的角為,求該三棱柱的體積.

【答案】(1)證明見解析;(2)32.

【解析】

1)利用棱柱的性質(zhì)以及相似三角形判斷定理,證得,從而得到;連接分別交,連,利用線面平行性質(zhì)定理證得,從而得到;再證得,從而得到,結(jié)論得證.

2)取的中點,連接,則或其補角為異面直線所成的角,結(jié)合題目條件,設(shè),分別求出,再利用余弦定理,即可建立方程求出,從而求出三棱柱的體積.

(1)證明:連接分別交,連,

平面,平面,平面平面=,∴,

又∵在三棱柱側(cè)面中,的中點,

可得,,所以,

,,∴

在平面中同理可證得,

故有的中點.

(2)的中點,連接,可知

或其補角為異面直線所成的角,

設(shè),則在中,可求

則余弦定理可求:,解得:,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左焦點為,右焦點為,設(shè)MN是橢圓C上位于x軸上方的兩動點,且直線與直線平行,交于點D

(Ⅰ)求的坐標;

(Ⅱ)求的最小值;

(Ⅲ)求證:是定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題:

①若將一組樣本數(shù)據(jù)中的每個數(shù)據(jù)都加上同一個常數(shù)后,則樣本的方差不變;

②在殘差圖中,殘差點分布的帶狀區(qū)域的寬度越狹窄,其模型擬合的精度越高;

③設(shè)隨機變量服從正態(tài)分布,若,則

④對分類變量的隨機變量的觀測值來說,越小,判斷“有關(guān)系”的把握越大.其中正確的命題序號是(

A.①②B.①②③C.①③④D.②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】足球是世界普及率最高的運動,我國大力發(fā)展校園足球.為了解本地區(qū)足球特色學(xué)校的發(fā)展狀況,社會調(diào)查小組得到如下統(tǒng)計數(shù)據(jù):

年份x

2014

2015

2016

2017

2018

足球特色學(xué)校y(百個)

0.30

0.60

1.00

1.40

1.70

1)根據(jù)上表數(shù)據(jù),計算yx的相關(guān)系數(shù)r,并說明yx的線性相關(guān)性強弱.

(已知:,則認為yx線性相關(guān)性很強;,則認為yx線性相關(guān)性一般;,則認為yx線性相關(guān)性較):

2)求y關(guān)于x的線性回歸方程,并預(yù)測A地區(qū)2020年足球特色學(xué)校的個數(shù)(精確到個).

參考公式和數(shù)據(jù):,

,

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓心為的圓,滿足下列條件:圓心位于軸正半軸上,與直線相切且被軸截得的弦長為,圓的面積小于13.

(Ⅰ)求圓的標準方程;

(Ⅱ)設(shè)過點的直線與圓交于不同的兩點,以為鄰邊作平行四邊形.是否存在這樣的直線,使得直線恰好平行?如果存在,求出的方程;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)兩個向量滿足||=2,||=1,,的夾角為60°,若向量2t7與向量t的夾角為鈍角,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,底面是邊長為3的正方形,平面,,,與平面所成的角為.

(1)求證:平面平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個盒子中裝有大量形狀大小一樣但重量不盡相同的小球,從中隨機抽取個作為樣本,稱出它們的重量(單位:)重量分組區(qū)間為,,,由此得到樣本的重量頻率分布直方圖(如圖).

1)求的值,并根據(jù)樣本數(shù)據(jù),估計盒子中小球重量的眾數(shù)與平均數(shù)(精確到0.01);

2)從盒子中裝的大量小球中,隨機抽取3個小球,其中重量在內(nèi)的小球個數(shù)為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義:從數(shù)列中抽取項按其在中的次序排列形成一個新數(shù)列,則稱的子數(shù)列;若成等差(或等比),則稱的等差(或等比)子數(shù)列.

(1)記數(shù)列的前項和為,已知.

①求數(shù)列的通項公式;

②數(shù)列是否存在等差子數(shù)列,若存在,求出等差子數(shù)列;若不存在,請說明理由.

(2)已知數(shù)列的通項公式為,證明:存在等比子數(shù)列.

查看答案和解析>>

同步練習(xí)冊答案