17.已知定義在[0,+∞)上的函數(shù)f(x)滿足f(x+1)=2f(x),當(dāng)x∈[0,1)時(shí),f(x)=-x2+x.設(shè)f(x)在[n-1,n)上的最大值為an(n∈N*),則a3+a4+a5=(  )
A.7B.$\frac{7}{8}$C.$\frac{5}{4}$D.14

分析 f(x+1)=2f(x),就是函數(shù)f(x)向右平移1個(gè)單位,最大值變?yōu)樵瓉淼?倍,當(dāng)x∈[0,1)時(shí),f(x)=-x2+x=-$(x-\frac{1}{2})^{2}$+$\frac{1}{4}$.可得a1=f($\frac{1}{2}$),q=2,可得an,即可得出.

解答 解:∵f(x+1)=2f(x),就是函數(shù)f(x)向右平移1個(gè)單位,最大值變?yōu)樵瓉淼?倍,
當(dāng)x∈[0,1)時(shí),f(x)=-x2+x=-$(x-\frac{1}{2})^{2}$+$\frac{1}{4}$.
a1=f($\frac{1}{2}$)=$\frac{1}{4}$,q=2,
∴an=$\frac{1}{4}×{2}^{n-1}$=2n-3,
∴a3+a4+a5=1+2+22=7.
故選:A.

點(diǎn)評 本題考查了二次函數(shù)的單調(diào)性、等比數(shù)列的通項(xiàng)公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知集合A={a,b},B={c,d,e},從A到B的不同映射個(gè)數(shù)是( 。
A.6B.8C.9D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在△ABC中,$\overrightarrow{m}$=(cos$\frac{C}{2}$,sin$\frac{C}{2}}$),$\overrightarrow{n}$=(cos$\frac{C}{2}$,-sin$\frac{C}{2}}$),且m和n的夾角為$\frac{π}{3}$.
(1)求角C;
(2)若c=$\sqrt{7}$,且△ABC的面積為$\frac{3\sqrt{3}}{2}$,求a+b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.求圓心在直線x-3y=0上,與y軸相切,且被直線x-y=0截得的弦長為2$\sqrt{7}$的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若命題 p:x∈R,x 2-1>0,則命題 p 的否定是x∈R,x2-1≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.為了得到函數(shù)y=sin(2x+$\frac{π}{3}$)的圖象,只需將函數(shù)y=sinx的圖象上所有的點(diǎn)( 。
A.橫坐標(biāo)伸長到原來的2倍,再向左平行移動(dòng)$\frac{π}{3}$個(gè)單位長度
B.橫坐標(biāo)縮短到原來的$\frac{1}{2}$倍,再向左平行移動(dòng)$\frac{π}{3}$個(gè)單位長度
C.橫坐標(biāo)縮短到原來的$\frac{1}{2}$倍,再向左平行移動(dòng)$\frac{π}{6}$個(gè)單位長度
D.橫坐標(biāo)縮短到原來的$\frac{1}{2}$倍,再向右平行移動(dòng)$\frac{π}{6}$個(gè)單位長度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知變量x與y負(fù)相關(guān),且由觀測數(shù)據(jù)算得樣本平均數(shù)$\overline x$=3,$\overline y$=3.5,則由該觀測數(shù)據(jù)算得的線性回歸方程可能是(  )
A.$\stackrel{∧}{y}$=0.4x+2.3B.$\stackrel{∧}{y}$=2x-2.4C.$\stackrel{∧}{y}$=-2x+9.5D.$\stackrel{∧}{y}$=-0.4x+4.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知Sn為數(shù)列{an}的前n項(xiàng)和,且滿足a1=1,a2=3,an+2=3an,則S2017等于(  )
A.31009-2B.2×31007C.$\frac{{3}^{2104}-1}{2}$D.$\frac{{3}^{2014}+1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知數(shù)列{an}的滿足a1=3,其前n項(xiàng)和Sn=2an+n(n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{$\frac{1}{{a}_{n}}$}的前n項(xiàng)和Tn,求證:Tn<1.

查看答案和解析>>

同步練習(xí)冊答案