8.已知函數(shù)f(x)=$\frac{e^x}{x}$.
(Ⅰ)若曲線y=f(x)在點(x0,f(x0))處的切線方程為ax-y=0,求x0的值;
(Ⅱ)當x>0時,求證:f(x)>x.

分析 (Ⅰ)求出f(x)的導數(shù),結合切線方程得到關于x0的方程,解出即可;
(Ⅱ)構造函數(shù)g(x)=$\frac{f(x)}{x}$,求出g(x)的單調性,得到g(x)的最小值,從而證出結論.

解答 解:(Ⅰ)$f'(x)=\frac{{{e^x}x-{e^x}}}{x^2}$.…(2分)
因為 切線ax-y=0過原點(0,0),
所以 $\frac{{{e^{x_0}}{x_0}-{e^{x_0}}}}{x_0^2}=\frac{{\frac{{{e^{x_0}}}}{x_0}}}{x_0}$.…(4分)
解得:x0=2.…(6分)
證明:(Ⅱ)設$g(x)=\frac{f(x)}{x}=\frac{e^x}{x^2}(x>0)$,
則$g'(x)=\frac{{{e^x}({x^2}-2x)}}{x^4}$.
令$g'(x)=\frac{{{e^x}({x^2}-2x)}}{x^4}=0$,解得x=2.…(8分)
x在(0,+∞)上變化時,g'(x),g(x)的變化情況如下表

x(0,2)2(2,+∞)
g'(x)-0+
g(x)$\frac{e^2}{4}$
所以 當x=2時,g(x)取得最小值$\frac{e^2}{4}$.…(10分)
所以 當x>0時,$g(x)≥\frac{e^2}{4}>1$,即f(x)>x.…(12分)

點評 本題考查了切線方程問題,考查函數(shù)的單調性、最值問題,考查導數(shù)的應用,是一道中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

18.△ABC的內角A,B,C的對邊分別為a,b,c,若${b^2}+{c^2}-{a^2}=\sqrt{3}bc$,則角A=$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.若1+i是關于x的實系數(shù)方程x2+bx+c=0的一個復數(shù)根,則( 。
A.b=-2,c=3B.b=-2,c=2C.b=-2,c=-1D.b=2,c=-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.執(zhí)行如圖的程序框圖,若輸出的S的值為-88,則判斷框中的條件可能為( 。
A.n>6?B.n≥7?C.n>8?D.n>9?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.第26屆世界大學生夏季運動會將于2011年8月12日到23日在深圳舉行,為了搞好接待工作,組委會在某學院招募了12名男志愿者和18名女志愿者.將這30名志愿者的身高編成如圖所示的莖葉圖(單位:cm):
若身高在175cm以上(包括175cm)定義為“高個子”,身高在175cm以下(不包括175cm)定義為“非高個子”,且只有“女高個子”才擔任“禮儀小姐”.
(1)如果用分層抽樣的方法從“高個子”和“非高個子”中提取5人,再從這5人中選2人,那么至少有一人是“高個子”的概率是多少?
(2)若從所有“高個子”中選3名志愿者,用ξ表示所選志愿者中能擔任“禮儀小姐”的人數(shù),試寫出ξ的分布列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.函數(shù)f(x)=27x-x3在區(qū)間[-4,2]上的最小值是-54.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知函數(shù)f(x)=$\frac{1}{3}$ax3+$\frac{1}{2}$bx2+cx(a>0,b∈R,c∈R),g(x)是f(x)的導函數(shù).
(1)若函數(shù)g(x)的最小值是g(-1)=0,且c=1,h(x)=$\left\{\begin{array}{l}g({x-1}),x≥1\\-g({x-1}),x<1\end{array}$,求h(2)+h(-2)的值;
(2)若a=1,c=0,且|g(x)|≤1在區(qū)間(0,2]上恒成立,試求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)f(x)=$\frac{{{x^2}+2x+a}}{x}$(x>0).
(I)當a>0時,求函數(shù)f(x)的最小值;
(Ⅱ)若對任意x∈[1,+∞),f(x)>0恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知函數(shù)f(x)=ln(x+1)-x.
(1)求函數(shù)f(x)的單調遞減區(qū)間;
(2)若x>-1,求證:ln(x+1)≤x.

查看答案和解析>>

同步練習冊答案