【題目】已知直三棱柱ABC﹣A1B1C1的所有棱長(zhǎng)都相等,D,E分別是AB,A1C1的中點(diǎn),如圖所示.
(1)求證:DE∥平面BCC1B1;
(2)求DE與平面ABC所成角的正切值.
【答案】
(1)證明:取AC的中點(diǎn)F,連結(jié)EF,DF,
∵D,E,F(xiàn)分別是AB,A1C1,AC的中點(diǎn),
∴EF∥CC1,DF∥BC,又DF∩EF=F,AC∩CC1=C,
∴平面DEF∥平面BCC1B1,
又DE平面DEF,
∴DE∥平面BCC1B1.
(2)解:∵EF∥CC1,CC1⊥平面BCC1B1.
∴EF⊥平面BCC1B1,
∴∠EDF是DE與平面ABC所成的角,
設(shè)三棱柱的棱長(zhǎng)為1,則DF= ,EF=1,
∴tan∠EDF= .
【解析】(1)取AC的中點(diǎn)F,連結(jié)EF,DF,則EF∥CC1,DF∥BC,故平面DEF∥平面BCC1B1,于是DE∥平面BCC1B1.(2)在Rt△DEF中求出tan∠EDF.
【考點(diǎn)精析】本題主要考查了直線與平面平行的判定和空間角的異面直線所成的角的相關(guān)知識(shí)點(diǎn),需要掌握平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡(jiǎn)記為:線線平行,則線面平行;已知為兩異面直線,A,C與B,D分別是上的任意兩點(diǎn),所成的角為,則才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知{an}是各項(xiàng)均為正數(shù)的等比數(shù)列(公比q>1),bn=log2an , b1+b2+b3=3,b1b2b3=﹣3,則an=( )
A.
B.
C.
D. 或
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知min{{a,b}= f(x)=min{|x|,|x+t|},函數(shù)f(x)的圖象關(guān)于直線x=﹣ 對(duì)稱(chēng);若“x∈[1,+∞),ex>2mex”是真命題(這里e是自然對(duì)數(shù)的底數(shù)),則當(dāng)實(shí)數(shù)m>0時(shí),函數(shù)g(x)=f(x)﹣m零點(diǎn)的個(gè)數(shù)為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ex﹣ax有極值1,這里e是自然對(duì)數(shù)的底數(shù).
(1)求實(shí)數(shù)a的值,并確定1是極大值還是極小值;
(2)若當(dāng)x∈[0,+∞)時(shí),f(x)≥mxln(x+1)+1恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)=sin(2x+φ)(|φ< |)的圖象向左平移 個(gè)單位后關(guān)于原點(diǎn)對(duì)稱(chēng),求函數(shù)f(x)在[0, ]上的最小值為( )
A.﹣
B.﹣
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2017年,嘉積中學(xué)即將迎來(lái)100周年校慶.為了了解在校同學(xué)們對(duì)嘉積中學(xué)的看法,學(xué)校進(jìn)行了調(diào)查,從三個(gè)年級(jí)任選三個(gè)班,同學(xué)們對(duì)嘉積中學(xué)的看法情況如下:
對(duì)嘉積中學(xué)的看法 | 非常好,嘉積中學(xué)奠定了 | 很好,我的中學(xué)很快樂(lè)很充實(shí) |
A班人數(shù)比例 |
|
|
B班人數(shù)比例 |
|
|
C班人數(shù)比例 |
|
|
(Ⅰ)從這三個(gè)班中各選一個(gè)同學(xué),求恰好有2人認(rèn)為嘉積中學(xué)“非常好”的概率(用比例作為相應(yīng)概率);
(Ⅱ)若在B班按所持態(tài)度分層抽樣,抽取9人,在這9人中任意選取3人,認(rèn)為嘉積中學(xué)“非常好”的人數(shù)記為ξ,求ξ的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) 的圖象上存在不同的兩點(diǎn) ,使得曲線 在這兩點(diǎn)處的切線重合,則實(shí)數(shù) 的取值范圍是 ( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)關(guān)于的一元二次方程.
(1)若是從0,1,2,3,4五個(gè)數(shù)中任取的一個(gè)數(shù),是從0,1,2三個(gè)數(shù)中任取的一個(gè)數(shù),求上述方程有實(shí)根的概率;
(2)若是從區(qū)間上任取的一個(gè)數(shù),是從區(qū)間上任取的一個(gè)數(shù),求上述方程有實(shí)根的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com