【題目】已知數(shù)列{an}滿足a2= ,且an+1=3an﹣1(n∈N*).
(1)求數(shù)列{an}的通項公式以及數(shù)列{an}的前n項和Sn的表達式;
(2)若不等式 ≤m對n∈N*恒成立,求實數(shù)m的取值范圍.
【答案】
(1)解:∵an+1=3an﹣1(n∈N*),∴an+1﹣ =3(an﹣ ),
∴數(shù)列 是等比數(shù)列,首項為3,公比為3.
∴an﹣ =3×3n﹣1=3n,
∴an= +3n,
∴Sn= + =
(2)解:不等式 ≤m,化為: ≤m,
∵ = 單調(diào)遞減,
∴m≥ = .
∴實數(shù)m的取值范圍是
【解析】(1)由an+1=3an﹣1(n∈N*),可得an+1﹣ =3(an﹣ ),利用等比數(shù)列的通項公式與求和公式即可得出.(2)不等式 ≤m,化為: ≤m,由于 = 單調(diào)遞減,即可得出m的求值范圍.
【考點精析】解答此題的關(guān)鍵在于理解數(shù)列的前n項和的相關(guān)知識,掌握數(shù)列{an}的前n項和sn與通項an的關(guān)系.
科目:高中數(shù)學 來源: 題型:
【題目】一次考試中,五位學生的數(shù)學,物理成績?nèi)缦卤硭荆?/span>
(1)要從5名學生中選2人參加一項活動,求選中的學生中至少有一人的物理成績高于90分的概率;
(2)根據(jù)上表數(shù)據(jù),畫出散點圖并用散點圖說明物理成績與數(shù)學成績之間線性相關(guān)關(guān)系的強弱,如果具有較強的線性相關(guān)關(guān)系,求與的線性回歸方程(系數(shù)精確到0.01);如果不具有線性相關(guān)關(guān)系,請說明理由.
參考公式:
回歸直線的方程是,其中, ,
是與對應(yīng)的回歸估計值,
參考數(shù)據(jù): , .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)等差數(shù)列{an}滿足 =1,公差d∈(﹣1,0),當且僅當n=9時,數(shù)列{an}的前n項和Sn取得最大值,求該數(shù)列首項a1的取值范圍( )
A.( , )
B.[ , ]
C.( , )
D.[ , ]
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在某中學舉行的物理知識競賽中,將三個年級參賽學生的成績在進行整理后分成5組,繪制出如圖所示的頻率分布直方圖,圖中從左到右依次為第一、第二、第三、第四、第五小組.已知第三小組的頻數(shù)是15.
(1)求成績在50~70分的頻率是多少;
(2)求這三個年級參賽學生的總?cè)藬?shù)是多少;
(3)求成績在80~100分的學生人數(shù)是多少.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】圓心在y軸上,半徑為1,且過點(1,2)的圓的方程為( )
A.x2+(y﹣2)2=1
B.x2+(y+2)2=1
C.(x﹣1)2+(y﹣3)2=1
D.x2+(y﹣3)2=1
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著我國經(jīng)濟的發(fā)展,居民的儲蓄存款逐年增長.設(shè)某地區(qū)城鄉(xiāng)居民人民幣儲蓄存款(年底余額)如下表:
年份 | 2010 | 2011 | 2012 | 2013 | 2014 |
時間代號t | 1 | 2 | 3 | 4 | 5 |
儲蓄存款y(千億元) | 5 | 6 | 7 | 8 | 10 |
(Ⅰ)求y關(guān)于t的回歸方程 = t+ .
(Ⅱ)用所求回歸方程預(yù)測該地區(qū)2015年(t=6)的人民幣儲蓄存款.
附:回歸方程 = t+ 中
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】等邊三角形ABC與正方形ABDE有一公共邊AB,二面角C﹣AB﹣D的余弦值為 ,M,N分別是AC.BC的中點,則EM,AN所成角的余弦值等于( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知坐標平面上點M(x,y)與兩個定點M1(26,1),M2(2,1)的距離之比等于5.
(1)求點M的軌跡方程,并說明軌跡是什么圖形;
(2)記(1)中的軌跡為C,過點A(﹣2,3)的直線l被C所截得的線段的長為8,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=2sinx,將函數(shù)y=f(x)的圖象向右平移個單位,再把橫坐標縮短到原來的(縱坐標不變),得到函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)的解析式,并寫出它的單調(diào)遞增區(qū)間.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com