右圖的莖葉圖是甲、乙兩人在4次模擬測試中的成績,其中一個數(shù)字被污損,則甲的平均成績不超過乙的平均成績的概率為       
0.3

試題分析:甲的平均成績?yōu)?0,設污損處的數(shù)字為,則,所以所求概率為.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

為了解某市市民對政府出臺樓市限購令的態(tài)度,在該市隨機抽取了50名市民進行調查,他們月收入(單位:百元)的頻數(shù)分布及對樓市限購令的贊成人數(shù)如下表:
月收入

[25,35)
[35,45)



頻數(shù)
5
10
15
10
5
5
贊成人數(shù)
4
8
8
5
2
1
將月收入不低于55的人群稱為“高收入族”,月收入低于55的人群稱為“非高收人族”。
(Ⅰ)根據(jù)已知條件完成下面的2×2列聯(lián)表,有多大的把握認為贊不贊成樓市限購令與收入高低有關?
已知:,
<2.706時,沒有充分的證據(jù)判定贊不贊成樓市限購令與收入高低有關;
>2.706時,有90%的把握判定贊不贊成樓市限購令與收入高低有關;
>3.841時,有95%的把握判定贊不贊成樓市限購令與收入高低有關;
>6.635時,有99%的把握判定贊不贊成樓市限購令與收入高低有關。
 
非高收入族
高收入族
總計
贊成
 
 
 
不贊成
 
 
 
總計
 
 
 
(Ⅱ)現(xiàn)從月收入在[55,65)的人群中隨機抽取兩人,求所抽取的兩人中至少一人贊成樓市限購令的概率。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某公司招聘員工采取兩次考試(筆試)的方法:第一試考選擇題,共10道題(均為四選一題型),每題10分,共100分;第二試考解答題,共3題。規(guī)則是:只有在一試中達到或超過80分者才獲通過并有資格參加二試,參加二試的人只有答對2題或3題才能被錄用。現(xiàn)有甲、乙兩人參加該公司的招聘考試。且已知在一試時:兩人均會做10道題中的6道;對于另外4道題來說,甲有兩題可排除兩個錯誤答案、有兩題完全要猜,乙有兩題可排除一個錯誤答案、有一題可排除兩個錯誤答案、有一題完全要猜。進入二試后,對于任意一題,甲答對的概率是、乙答對的概率是.(1)分別求甲、乙兩人能通過一試進入二試的概率、;(2)求甲、乙兩人都能被錄用的概率.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

小波以游戲方式決定是去打球、唱歌還是去下棋.游戲規(guī)則為:以O為起點,再從A1,A2,A3,A4,A5,A6(如圖)這6個點中任取兩點分別為終點得到兩個向量,記這兩個向量的數(shù)量積為X,若X>0就去打球,若X=0就去唱歌,若X<0就去下棋.

(1)寫出數(shù)量積X的所有可能取值;
(2)分別求小波去下棋的概率和不去唱歌的概率.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

從長度分別為2,3,4,5的四條線段中任意取出三條,則以這三條線段為邊可以構成三角形的概率是________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某校為組建;@球隊,對報名同學進行定點投籃測試,規(guī)定每位同學最多投3次,每次在AB處投籃,在A處投進一球得3分,在B處投進一球得2分,否則得0分,每次投籃結果相互獨立,將得分逐次累加并用X表示,如果X的值不低于3分就認為通過測試,立即停止投籃,否則繼續(xù)投籃,直到投完三次為止.投籃方案有以下兩種:
方案1:先在A處投一球,以后都在B處投;
方案2:都在B處投籃.
已知甲同學在A處投籃的命中率為0.4,在B處投籃的命中率為0.6.
(1)甲同學若選擇方案1,求X=2時的概率;
(2)甲同學若選擇方案2,求X的分布列和數(shù)學期望;
(3)甲同學選擇哪種方案通過測試的可能性更大?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

同時拋擲4枚硬幣,其中恰有2枚正面朝上的概率是       .(結果用分數(shù)表示).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

某小組有10人,其中血型為A型有3人,B型4人,AB型3人,現(xiàn)任選2人,則此2人是同一血型的概率為         .(結論用數(shù)值表示)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

從某學習小組10名同學中選出3人參加一項活動,其中甲、乙兩人都被選中的概率是  ___  

查看答案和解析>>

同步練習冊答案