【題目】十八屆五中全會首次提出了綠色發(fā)展理念,將綠色發(fā)展作為十三五乃至更長時期經(jīng)濟社會發(fā)展的一個重要理念.某地區(qū)踐行綠水青山就是金山銀山的綠色發(fā)展理念,2015年初至2019年初,該地區(qū)綠化面積y(單位:平方公里)的數(shù)據(jù)如下表:

年份

2015

2016

2017

2018

2019

年份代號x

1

2

3

4

5

綠化面積y

2.8

3.5

4.3

4.7

5.2

1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;

2)利用(1)中的回歸方程,預(yù)測該地區(qū)2025年初的綠化面積.

(參考公式:線性回歸方程:,為數(shù)據(jù)平均數(shù))

【答案】1;(2)預(yù)測2025年初該地區(qū)綠化面積約為8.9平方公里.

【解析】

1)根據(jù)所給數(shù)據(jù),所給公式計算系數(shù)得回歸直線方程;

2代入回歸方程可估算結(jié)論.

1,,

,

從而回歸方程為;

2)到2025年初時,即,解得

故預(yù)測2025年初該地區(qū)綠化面積約為8.9平方公里.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】由中央電視臺綜合頻道()和唯眾傳媒聯(lián)合制作的《開講啦》是中國首檔青年電視公開課.每期節(jié)目由一位知名人士講述自己的故事,分享他們對于生活和生命的感悟,給予中國青年現(xiàn)實的討論和心靈的滋養(yǎng),討論青年們的人生問題,同時也在討論青春中國的社會問題,受到青年觀眾的喜愛,為了了解觀眾對節(jié)目的喜愛程度,電視臺隨機調(diào)查了、兩個地區(qū)的100名觀眾,得到如下的列聯(lián)表,已知在被調(diào)查的100名觀眾中隨機抽取1名,該觀眾是地區(qū)當中“非常滿意”的觀眾的概率為0.35.

非常滿意

滿意

合計

30

15

合計

(1)現(xiàn)從100名觀眾中用分層抽樣的方法抽取20名進行問卷調(diào)查,則應(yīng)抽取“非常滿意”的地區(qū)的人數(shù)各是多少.

0.050

0.010

0.001

3.841

6.635

10.828

(2)完成上述表格,并根據(jù)表格判斷是否有的把握認為觀眾的滿意程度與所在地區(qū)有關(guān)系.

(3)若以抽樣調(diào)查的頻率為概率,從地區(qū)隨機抽取3人,設(shè)抽到的觀眾“非常滿意”的人數(shù)為,求的分布列和期望.

附:參考公式:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)是定義在上的連續(xù)函數(shù),且在處存在導(dǎo)數(shù),若函數(shù)及其導(dǎo)函數(shù)滿足,則函數(shù)( )

A.既有極大值又有極小值B.有極大值 ,無極小值

C.有極小值,無極大值D.既無極大值也無極小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面是矩形,面底面,且是邊長為的等邊三角形, 上,且.

(1)求證: 的中點;

(2)在上是否存在點,使二面角為直角?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在梯形中,,,,四邊形是矩形,且平面平面.

(Ⅰ)求證:平面

(Ⅱ)當二面角的平面角的余弦值為,求這個六面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(1)當時,討論函數(shù)的零點個數(shù).

(2)的最小值為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,拋物線C關(guān)于軸對稱,頂點為坐標原點,且經(jīng)過點

1)求拋物線C的標準方程;

2 過點的直線交拋物線于MN兩點.是否存在定直線,使得l上任意點P與點M,QN所成直線的斜率,,成等差數(shù)列.若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖:在四棱錐中,平面.,.點的交點,點在線段上且.

(1)證明:平面

(2)求直線與平面所成角的正弦值;

(3)求二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是正方形,且,平面 平面,,點為線段的中點,點是線段上的一個動點.

(Ⅰ)求證:平面 平面;

(Ⅱ)設(shè)二面角的平面角為,試判斷在線段上是否存在這樣的點,使得,若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案