【題目】在正三棱柱ABC﹣A1B1C1中,點(diǎn)D是BC的中點(diǎn).

(1)求證:A1C∥平面AB1D;
(2)設(shè)M為棱CC1的點(diǎn),且滿足BM⊥B1D,求證:平面AB1D⊥平面ABM.

【答案】
(1)證明:記A1B∩AB1=O,連接OD.

∵四邊形AA1B1B為矩形,∴O是A1B的中點(diǎn),

又∵D是BC的中點(diǎn),∴A1C∥OD.

又∵A1C平面AB1D,OD平面AB1D,

∴A1C∥平面AB1D.


(2)證明:∵△ABC是正三角形,D是BC的中點(diǎn),

∴AD⊥BC.…8分

∵平面ABC⊥平面BB1C1C,

平面ABC∩平面BB1C1C=BC,AD平面ABC,

∴AD⊥平面BB1C1C.

或利用CC1⊥平面ABC證明AD⊥平面BB1C1C.

∵BM平面BB1C1C,∴AD⊥BM.

又∵BM⊥B1D,AD∩B1D=D,AD,B1D平面AB1D,

∴BM⊥平面AB1D.

又∵BM平面ABM,

∴平面AB1D⊥平面ABM.


【解析】(1)連接A1B,記A1B∩AB1=O,連接OD,由O是A1B的中點(diǎn),D是BC的中點(diǎn),根據(jù)中位線可得A1C∥OD,即A1C∥平面AB1D,(2)根據(jù)面面垂直的判定定理進(jìn)行證明即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是某路段的一個(gè)檢測(cè)點(diǎn)對(duì)200輛汽車(chē)的車(chē)速進(jìn)行檢測(cè)所得結(jié)果的頻率分布直方圖,則下列說(shuō)法正確的是( )

A.平均數(shù)為62.5
B.中位數(shù)為62.5
C.眾數(shù)為60和70
D.以上都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,滿足(2b﹣c)cosA=acosC.
(1)求角A;
(2)若 ,b+c=5,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)列{an}的前n項(xiàng)和為Sn , 且Sn=n(n+1),n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足: ,求數(shù)列{bn}的通項(xiàng)公式;
(3)令 ,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某程序框圖如圖所示,則該程序運(yùn)行后輸出的值是( )

A.0
B.﹣1
C.﹣2
D.﹣8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)
(1)求函數(shù)y=f(x)的周期,并寫(xiě)出其單調(diào)遞減區(qū)間;
(2)當(dāng) 時(shí),求f(x)的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是2007年在廣州舉行的全國(guó)少數(shù)民族運(yùn)動(dòng)會(huì)上,七位評(píng)委為某民族舞蹈打出的分?jǐn)?shù)的莖葉統(tǒng)計(jì)圖,去掉一個(gè)最高分和一個(gè)最低分后,所剩數(shù)據(jù)的平均數(shù)和方差分別為( )

A.84,4.84
B.84,1.6
C.85,1.6
D.85,4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】由代數(shù)式的乘法法則類(lèi)比推導(dǎo)向量的數(shù)量積的運(yùn)算法則:
①mn=nm類(lèi)比得到ab=ba;
②(m+n)t=mt+nt類(lèi)比得到(a+b)c=ac+bc;
③(mn)t=m(nt) 類(lèi)比得到(ab)c=a(bc);
④t≠0,mt=rtm=r類(lèi)比得到p≠0,ap=bpa=b;
⑤|mn|=|m||n|類(lèi)比得到|ab|=|a||b|;
= 類(lèi)比得到
以上式子中,類(lèi)比得到的結(jié)論正確的序號(hào)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 且Sn+an=1,數(shù)列{bn}為等差數(shù)列,且b1+b2=b3=3.
(1)求Sn
(2)求數(shù)列(anbn)的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案