【題目】已知數列{an}滿足a1+2a2+3a3+…+nan=n(n∈N*).
(1)求數列{an}的通項公式an;
(2)令 ,寫出Tn關于n的表達式,并求滿足Tn> 時n的取值范圍.
【答案】
(1)解:由a1+2a2+3a3+…+nan=n,
可得a1+2a2+3a3+…+(n﹣1)an﹣1=n﹣1(n>1),
相減可得nan=1,即有an= ,(n>1),
當n=1時,a1=1,上式也成立,
可得an= ,(n∈N*);
(2)解:由 ,
結合(1)可得,bn=(2n﹣1)( )n,
前n項和Tn=1 +3( )2+…+(2n﹣3)( )n﹣1+(2n﹣1)( )n,
Tn=1( )2+3( )3+…+(2n﹣3)( )n+(2n﹣1)( )n+1,
相減可得, Tn= +2[( )2+…+( )n﹣1+( )n]﹣(2n﹣1)( )n+1
= +2 ﹣(2n﹣1)( )n+1,
化簡可得,前n項和Tn=3﹣ .
由Tn﹣Tn﹣1=3﹣ ﹣(3﹣ )= ,
當n≥2時,Tn>Tn﹣1,可得數列{Tn}遞增,
由T4=3﹣ = < ;T5=3﹣ = > .
即有n≥5時,Tn≥T5> .
故n的取值范圍是n≥5,且n∈N*
【解析】(1)由條件,可將n換為n﹣1,相減,即可得到所求通項公式;(2)求得bn=(2n﹣1)( )n , 由數列的求和方法:錯位相減法,運用等比數列的求和公式,計算可得Tn , 判斷單調性,求得T4 , T5 , 即可得到所求n的范圍.
【考點精析】認真審題,首先需要了解數列的前n項和(數列{an}的前n項和sn與通項an的關系).
科目:高中數學 來源: 題型:
【題目】在正方體ABCD﹣A1B1C1D1中,點Q為對角面A1BCD1內一動點,點M、N分別在直線AD和AC上自由滑動,直線DQ與MN所成角的最小值為θ,則下列結論中正確的是( )
A. 若θ=15°,則點Q的軌跡為橢圓的一部分
B. 若θ=30°,則點Q的軌跡為橢圓的一部分
C. 若θ=45°,則點Q的軌跡為橢圓的一部分
D. 若θ=60°,則點Q的軌跡為橢圓的一部分
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】拋物線C的方程為y=ax2(a<0),過拋物線C上一點P(x0 , y0)(x0≠0)作斜率為k1 , k2的兩條直線分別交拋物線C于A(x1 , y1)B(x2 , y2)兩點(P,A,B三點互不相同),且滿足k2+λk1=0(λ≠0且λ≠﹣1).
(Ⅰ)求拋物線C的焦點坐標和準線方程;
(Ⅱ)設直線AB上一點M,滿足 =λ ,證明線段PM的中點在y軸上;
(Ⅲ)當λ=1時,若點P的坐標為(1,﹣1),求∠PAB為鈍角時點A的縱坐標y1的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】f(x)是定義在(0,+∞)上單調函數,且對x∈(0,+∞),都有f(f(x)﹣lnx)=e+1,則方程f(x)﹣f′(x)=e的實數解所在的區(qū)間是( )
A.(0, )
B.( ,1)
C.(1,e)
D.(e,3)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】連續(xù)拋擲同一顆均勻的骰子,令第i次得到的點數為ai , 若存在正整數k,使a1+a2+…+ak=6,則稱k為你的幸運數字.
(1)求你的幸運數字為3的概率;
(2)若k=1,則你的得分為5分;若k=2,則你的得分為3分;若k=3,則你的得分為1分;若拋擲三次還沒找到你的幸運數字則記0分,求得分X的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某人在連續(xù)7天的定點投籃的分數統(tǒng)計如下:在上述統(tǒng)計數據的分析中,一部分計算如右圖所示的算法流程圖(其中 是這7個數據的平均數),則輸出的S的值是( )
觀測次數i | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
觀測數據ai | 5 | 6 | 8 | 6 | 8 | 8 | 8 |
A.1
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:的左、右焦點分別為,,若橢圓經過點,且的面積為.
(1)求橢圓的標準方程;
(2)設斜率為的直線與以原點為圓心,半徑為的圓交于,兩點,與橢圓交于,兩點,且,當取得最小值時,求直線的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)= (a>b>0)的圖象是曲線C.
(1)在如圖的坐標系中分別做出曲線C的示意圖,并分別標出曲線C與x軸的左、右交點A1 , A2 .
(2)設P是曲線C上位于第一象限的任意一點,過A2作A2R⊥A1P于R,設A2R與曲線C交于Q,求直線PQ斜率的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于兩個定義域均為D的函數f(x),g(x),若存在最小正實數M,使得對于任意x∈D,都有|f(x)﹣g(x)|≤M,則稱M為函數f(x),g(x)的“差距”,并記作||f(x),g(x)||.
(1)求f(x)=sinx(x∈R),g(x)=cosx(x∈R)的差距;
(2)設f(x)= (x∈[1,e ]),g(x)=mlnx(x∈[1,e ]).(e≈2.718)
①若m=2,且||f(x),g(x)||=1,求滿足條件的最大正整數a;
②若a=2,且||f(x),g(x)||=2,求實數m的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com