【題目】從某學(xué)校的名男生中隨機抽取名測量身高,被測學(xué)生身高全部介于和之間,將測量結(jié)果按如下方式分成八組:第一組,第二組,第八組,下圖是按上述分組方法得到的頻率分布直方圖的一部分,已知第一組與第八組人數(shù)相同,第六組的人數(shù)為人。
(Ⅰ)求第七組的頻率;
(Ⅱ)估計該校的名男生的身高的中位數(shù)以及身高在以上(含)的人數(shù);
(Ⅲ)若從身高屬于第六組和第八組的所有男生中隨機抽取兩名男生,記他們的身高分別為,事件,事件,求
【答案】(Ⅰ);(Ⅱ)人;(Ⅲ).
【解析】
試題分析:(Ⅰ)根據(jù)頻率=頻數(shù)樣本容量,及頻率直方圖的小矩形框的面積為所在的頻率,分別求得第六組合第七組的頻率;(Ⅱ)中位數(shù)是將數(shù)據(jù)從小到大排處于中間位置的數(shù),在頻率分布直方圖中為面積兩邊一樣的數(shù)據(jù),列出方程易得中位數(shù),身高在以上的樣本頻率為代表總體概率,進而求得所求人數(shù);(Ⅲ)分別根據(jù)題意得到第六組和第八組的人數(shù),按列舉法得所求概率.
試題解析:(Ⅰ)第六組的頻率為, 1分
第七組的頻率為 (3分)
(Ⅱ)易知中位數(shù)位于之間設(shè)為,則有
,
身高在180cm以上(含180cm)的人數(shù)為人 (8分)
(Ⅲ)設(shè)第六組四人分別為,
第八組二人分別為,則從六人中任取兩名共有15種不同取法
,共有7種情況,有0種
故 (13分)
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)關(guān)于某產(chǎn)品的明星代言費x(百萬元)和其銷售額y(百萬元),有如表的統(tǒng)計表格:
i | 1 | 2 | 3 | 4 | 5 | 合計 |
xi(百萬元) | 1.26 | 1.44 | 1.59 | 1.71 | 1.82 | 7.82 |
wi(百萬元) | 2.00 | 2.99 | 4.02 | 5.00 | 6.03 | 20.04 |
yi(百萬元) | 3.20 | 4.80 | 6.50 | 7.50 | 8.00 | 30.00 |
=1.56, =4.01, =6, xiyi=48.66, wiyi=132.62, (xi﹣ )2=0.20, (wi﹣ )2=10.14 |
其中 .
(1)在坐標(biāo)系中,作出銷售額y關(guān)于廣告費x的回歸方程的散點圖,根據(jù)散點圖指出:y=a+blnx,y=c+dx3哪一個適合作銷售額y關(guān)于明星代言費x的回歸類方程(不需要說明理由);
(2)已知這種產(chǎn)品的純收益z(百萬元)與x,y有如下關(guān)系:x=0.2y﹣0.726x(x∈[1.00,2.00]),試寫出z=f(x)的函數(shù)關(guān)系式,試估計當(dāng)x取何值時,純收益z取最大值?(以上計算過程中的數(shù)據(jù)統(tǒng)一保留到小數(shù)點第2位)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種商品在天內(nèi)每克的銷售價格(元)與時間的函數(shù)圖象是如圖所示的兩條線段(不包含兩點);該商品在 30 天內(nèi)日銷售量(克)與時間(天)之間的函數(shù)關(guān)系如下表所示:
第天 | 5 | 15 | 20 | 30 |
銷售量克 | 35 | 25 | 20 | 10 |
(1)根據(jù)提供的圖象,寫出該商品每克銷售的價格(元)與時間的函數(shù)關(guān)系式;
(2)根據(jù)表中數(shù)據(jù)寫出一個反映日銷售量隨時間變化的函數(shù)關(guān)系式;
(3)在(2)的基礎(chǔ)上求該商品的日銷售金額的最大值,并求出對應(yīng)的值.
(注:日銷售金額=每克的銷售價格×日銷售量)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,直線過定點.
(Ⅰ)若與圓相切,求的方程;
(Ⅱ)若與圓相交于兩點,求的面積的最大值,并求此時直線的方程.(其中點C是圓C的圓心)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若二次函數(shù)f(x)=4x2-2(t-2)x-2t2-t+1在區(qū)間[-1,1]內(nèi)至少存在一個值m,使得f(m)>0,則實數(shù)t的取值范圍( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點A(0,-2),橢圓E: (a>b>0)的離心率為,F是橢圓E的右焦點,直線AF的斜率為,O為坐標(biāo)原點.
(1)求E的方程;
(2)設(shè)過點A的動直線l與E相交于P,Q兩點.當(dāng)△OPQ的面積最大時,求l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商品一年內(nèi)出廠價格在6元的基礎(chǔ)上按月份隨正弦曲線波動,已知3月份達到最高價格8元,7月份價格最低為4元,該商品在商店內(nèi)的銷售價格在8元基礎(chǔ)上按月份隨正弦曲線波動,5月份銷售價格最高為10元,9月份銷售價最低為6元,假設(shè)商店每月購進這種商品m件,且當(dāng)月銷完,你估計哪個月份盈利最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C經(jīng)過點A(-1,0),8(0,3),圓心C在第一象限,線段AB的垂直平分線交圓C 于點D,E,且DE =2.
(1)求直線DE的方程;
(2)求圓C的方程;
(3)過點(0,4)作圓C的切線,求切線的斜率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com