已知函數(shù)

⑴判斷函數(shù)的單調(diào)性,并證明;

⑵求函數(shù)的最大值和最小值.

 

【答案】

(1)增函數(shù),證明見解析;(2),

【解析】

試題分析:(1)利用函數(shù)單調(diào)的定義證明,可得函數(shù)在[3,5]上為單調(diào)增函數(shù);(2)根據(jù)函數(shù)的單調(diào)遞增,可得函數(shù)的最值為.

試題解析:⑴ 設(shè) ,所以      4分     

   即, 在[3,5]上為增函數(shù).                   6分

在[3,5]上為增函數(shù),則,          10分

考點:1.函數(shù)單調(diào)的判斷;2.利用函數(shù)單調(diào)性求最值

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sin
x
4
cos
x
4
-2
3
sin2
x
4
+
3

(Ⅰ)求函數(shù)f(x)的最小正周期及最值;
(Ⅱ)令g(x)=f(x+
π
3
)
,判斷函數(shù)g(x)的奇偶性,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)φ(x)=f(x)+g(x),其中f(x)是x的正比例函數(shù),g(x)是x的反比例函數(shù),且φ(
1
3
)=16,φ(1)=8.
(1)求φ(x)的解析式,并指出定義域;
(2)試分別判斷函數(shù)φ(x)在(0,
15
3
],[
15
3
,+∞
)的單調(diào)性并證明;
(3)求φ(x)在(0,+∞)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的圖象在[a,b]上連續(xù)不斷曲線,定義:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]).其中,min{f(t)|t∈D}表示函數(shù)f(t)在D上的最小值,max{f(t)|x∈D}表示函數(shù)f(t)在D上的最大值.若存在最小正整數(shù)k,使得f2(x)-f1(x)≤k(x-a)對任意的x∈[a,b]成立,則稱函數(shù)f(x)為[a,b]上的“k階收縮函數(shù)”.
(1)已知函數(shù)f(x)=2sinx(0≤x≤
n
2
),試寫出f1(x),f2(x)的表達式,并判斷f(x)是否為[0,
n
2
]上的“k階收縮函數(shù)”,如果是,請求對應(yīng)的k的值;如果不是,請說明理由;
(2)已知b>0,函數(shù)g(x)=-x3+3x2是[0,b]上的2階收縮函數(shù),求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009年上海市浦東新區(qū)高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

已知函數(shù),其中a>0.
(1)若2f(1)=f(-1),求a的值;
(2)當(dāng)a≥1時,判斷函數(shù)f(x)在區(qū)間[0,+∞)上的單調(diào)性;
(3)若函數(shù)f(x)在區(qū)間[1,+∞)上是增函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009年上海市浦東新區(qū)高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

已知函數(shù),其中a>0.
(1)若2f(1)=f(-1),求a的值;
(2)當(dāng)a≥1時,判斷函數(shù)f(x)在區(qū)間[0,+∞)上的單調(diào)性;
(3)若函數(shù)f(x)在區(qū)間[1,+∞)上是增函數(shù),求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案