A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
分析 由題意可知,直線AB的斜率k=tan60°=$\sqrt{3}$,設(shè)直線AB的方程為y=$\sqrt{3}$x+m,代入橢圓方程,由韋達(dá)定理可知:x1+x2=-$\frac{2\sqrt{3}{a}^{2}m}{^{2}+3{a}^{2}}$,則y1+y2=$\sqrt{3}$(x1+x2)+2m,$\overrightarrow{OA}$+$\overrightarrow{OB}$與$\overrightarrow{a}$=(4,-$\sqrt{3}$)共線,因此-$\sqrt{3}$(x1+x2)=4(y1+y2),整理得:5$\sqrt{3}$(x1+x2)+8m=0,將x1+x2=-$\frac{2\sqrt{3}{a}^{2}m}{^{2}+3{a}^{2}}$代入求得3a2=4b2,由b2=a2-c2,求得a=2c,由橢圓的離心率公式可知:e=$\frac{c}{a}$=$\frac{c}{2c}$=$\frac{1}{2}$.
解答 解:由題意,由題意可知:直線AB的斜率k=tan60°=$\sqrt{3}$,則設(shè)直線AB的方程為y=$\sqrt{3}$x+m,
則$\left\{\begin{array}{l}{y=\sqrt{3}x+m}\\{\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1}\end{array}\right.$,整理得(b2+3a2)x2+2$\sqrt{3}$a2mx+a2m2-a2b2=0,
設(shè)A(x1,y1),B(x2,y2),
由韋達(dá)定理可知:x1+x2=-$\frac{2\sqrt{3}{a}^{2}m}{^{2}+3{a}^{2}}$,則y1+y2=$\sqrt{3}$(x1+x2)+2m,
由$\overrightarrow{OA}$+$\overrightarrow{OB}$=(x1+x2,y1+y2),
∵$\overrightarrow{OA}$+$\overrightarrow{OB}$與$\overrightarrow{a}$=(4,-$\sqrt{3}$)共線,
∴-$\sqrt{3}$(x1+x2)=4(y1+y2),即4(y1+y2)+$\sqrt{3}$(x1+x2)=0,
∴4[$\sqrt{3}$(x1+x2)+2m]+$\sqrt{3}$(x1+x2)=0,
∴5$\sqrt{3}$(x1+x2)+8m=0,
∴5$\sqrt{3}$×(-$\frac{2\sqrt{3}{a}^{2}m}{^{2}+3{a}^{2}}$)+8m=0,$\frac{15{a}^{2}}{^{2}+3{a}^{2}}$=4,整理得:3a2=4b2,
由b2=a2-c2,
∴3a2=4(a2-c2),整理得:a2=4c2,
則a=2c,
由橢圓的離心率e=$\frac{c}{a}$=$\frac{c}{2c}$=$\frac{1}{2}$,
∴橢圓的離心率$\frac{1}{2}$,
故選A.
點(diǎn)評(píng) 本題考查橢圓的簡(jiǎn)單幾何性質(zhì),直線與橢圓的位置關(guān)系,考查向量的共線定理,直線的斜率與傾斜角的關(guān)系及韋達(dá)定理的綜合應(yīng)用,考查計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -27 | B. | 27 | C. | -3 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 5 | B. | 4 | C. | 2 | D. | $\frac{5}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {2} | B. | {1,2,2,4} | C. | ∅ | D. | {1,2,4} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com