已知橢圓過點,其長軸、焦距和短軸的長的平方依次成等差數(shù)列.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)若直線與軸正半軸、軸分別交于點,與橢圓分別交于點,各點均不重合,且滿足,. 當時,試證明直線過定點.過定點(1,0)
(1)
(2)結(jié)合向量關(guān)系式,以及韋達定理,來分析直線的方程,進而得到定點坐標。
解析試題分析:解:(Ⅰ)設(shè)橢圓的焦距為 1分
由題意知,且又
所以橢圓方程為. 4分
(Ⅱ)由題意設(shè)的方程為 5分
由知6分
同理由知
∵,∴ (1) 7分
聯(lián)立得, 8分
只需 (2)
且有 (3) 9分
把(3)代入(1)得且滿足(2), 10分
依題意,,故
從而的方程為,即直線過定點(1,0) 12分
考點:橢圓方程,直線與橢圓的位置關(guān)系
點評:主要是考查了直線與橢圓的位置關(guān)系的運用,代數(shù)法來設(shè)而不求的解題思想是解析幾何的本質(zhì),屬于中檔題。
科目:高中數(shù)學 來源: 題型:解答題
在平面直角坐標系中,以坐標原點為幾點,軸的正半軸為極軸建立極坐標系.已知直線上兩點的極坐標分別為,圓的參數(shù)方程(為參數(shù)).
(Ⅰ)設(shè)為線段的中點,求直線的平面直角坐標方程;
(Ⅱ)判斷直線與圓的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知在平面直角坐標系中的一個橢圓,它的中心在原點,左焦點為,右頂點為,設(shè)點.
(1)求該橢圓的標準方程;
(2)若是橢圓上的動點,求線段中點的軌跡方程;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知動點到點的距離與到直線的距離之比為定值,記的軌跡為.
(1)求的方程,并畫出的簡圖;
(2)點是圓上第一象限內(nèi)的任意一點,過作圓的切線交軌跡于,兩點.
(i)證明:;
(ii)求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設(shè)橢圓的右焦點為,直線與軸交于點,若(其中為坐標原點).
(I)求橢圓的方程;
(II)設(shè)是橢圓上的任意一點,為圓的任意一條直徑(、為直徑的兩個端點),求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,過拋物線(>0)的頂點作兩條互相垂直的弦OA、OB。
⑴設(shè)OA的斜率為k,試用k表示點A、B的坐標;
⑵求弦AB中點M的軌跡方程。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,已知直線與拋物線相切于點,且與軸交于點,為坐標原點,定點的坐標為.
(1)若動點滿足,求點的軌跡;
(2)若過點的直線(斜率不等于零)與(1)中的軌跡交于不同的兩點(在之間),試求△OBE與△OBF面積之比的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com