【題目】如圖,某海面上有、三個小島(面積大小忽略不計),島在島的北偏東方向距千米處,島在島的正東方向距20千米處.為坐標(biāo)原點,的正東方向為軸的正方向,1千米為單位長度,建立平面直角坐標(biāo)系.經(jīng)過、、三點.

1)求圓的方程;

2)若圓區(qū)域內(nèi)有未知暗礁,現(xiàn)有一船D島的南偏西30°方向距40千米處,正沿著北偏東行駛,若不改變方向,試問該船有沒有觸礁的危險?

【答案】12)該船有觸礁的危險

【解析】

1)由圓過點、,設(shè)圓的方程為

再將點、、的坐標(biāo)代入運算即可得解;

2)由題意可得該船航行方向為直線,再結(jié)合點到直線的距離公式可得圓心到直線的距離,得解.

解:(1)如圖所示,,

設(shè)過、、三點的圓的方程為,

得:,

解得,,

故所以圓的方程為,

圓心為,半徑,

2)該船初始位置為點,則,

且該船航線所在直線的斜率為1,

故該船航行方向為直線

由于圓心到直線的距離,

故該船有觸礁的危險.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若,求證:

(2)若,恒有,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,動點到定點的距離與到定直線的距離的比為,動點的軌跡記為.

1)求軌跡的方程;

2)若點在軌跡上運動,點在圓上運動,且總有

的取值范圍;

3)過點的動直線交軌跡兩點,試問:在此坐標(biāo)平面上是否存在一個定點,使得無論如何轉(zhuǎn)動,以為直徑的圓恒過點?若存在,求出點的坐標(biāo).若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大型商場去年國慶期間累計生成萬張購物單,從中隨機抽出張,對每單消費金額進行統(tǒng)計得到下表:

消費金額(單位:元)

購物單張數(shù)

25

25

30

10

10

由于工作人員失誤,后兩欄數(shù)據(jù)已無法辨識,但當(dāng)時記錄表明,根據(jù)由以上數(shù)據(jù)繪制成的頻率分布直方圖所估計出的每單消費額的中位數(shù)與平均數(shù)恰好相等.用頻率估計概率,完成下列問題:

(1)估計去年國慶期間該商場累計生成的購物單中,單筆消費額超過元的概率;

(2)為鼓勵顧客消費,該商場打算在今年國慶期間進行促銷活動,凡單筆消費超過元者,可抽獎一次,中一等獎、二等獎、三等獎的顧客可以分別獲得價值元、元、元的獎品.已知中獎率為,且一等獎、二等獎、三等獎的中獎率依次構(gòu)成等比數(shù)列,其中一等獎的中獎率為.若今年國慶期間該商場的購物單數(shù)量比去年同期增長,式預(yù)測商場今年國慶期間采辦獎品的開銷.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,以原點為極點,軸的非負半軸為極軸建立極坐標(biāo)系.已知曲線的極坐標(biāo)方程為,為曲線上的動點,軸、軸的正半軸分別交于,兩點.

(1)求線段中點的軌跡的參數(shù)方程;

(2)若是(1)中點的軌跡上的動點,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于圓周率,數(shù)學(xué)發(fā)展史上出現(xiàn)過多很有創(chuàng)意的求法,如著名的蒲豐試驗,受其啟發(fā),我們也可以通過設(shè)計下面的試驗來估計的值,試驗步驟如下:①先請高二年級名同學(xué)每人在小卡片上隨機寫下一個實數(shù)對;②若卡片上的能與構(gòu)成銳角三角形,則將此卡片上交;③統(tǒng)計上交的卡片數(shù),記為;④根據(jù)統(tǒng)計數(shù)估計的值.那么可以估計的值約為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公交公司為了方便市民出行,科學(xué)規(guī)劃車輛投放,在一個人員密集流動地段增設(shè)一個起點站,為了研究車輛發(fā)車間隔時間x與乘客等候人數(shù)y之間的關(guān)系,經(jīng)過調(diào)查得到如下數(shù)據(jù):

間隔時間x/

10

11

12

13

14

15

等候人數(shù)y/

23

25

26

29

28

31

調(diào)查小組先從這6組數(shù)據(jù)中選取4組數(shù)據(jù)求線性回歸方程,再用剩下的2組數(shù)據(jù)進行檢驗.檢驗方法如下:先用求得的線性回歸方程計算間隔時間對應(yīng)的等候人數(shù),再求與實際等候人數(shù)y的差,若差值的絕對值都不超過1,則稱所求方程是“恰當(dāng)回歸方程”.

1)從這6組數(shù)據(jù)中隨機選取4組數(shù)據(jù),求剩下的2組數(shù)據(jù)的間隔時間相鄰的概率;

2)若選取的是中間4組數(shù)據(jù),求y關(guān)于x的線性回歸方程,并判斷此方程是否是“恰當(dāng)回歸方程”.

附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓的離心率為,短軸端點與兩焦點圍成的三角形面積為.

(1)求橢圓的方程;

(2)設(shè)直線與橢圓交于兩點,且過點,為坐標(biāo)原點,當(dāng)△為直角三角形,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知動點滿足,記M的軌跡為曲線C,直線l)交曲線CPQ兩點,點P在第一象限,軸,垂足為E,連接QE并延長交曲線C于點G.

(1)求曲線C的方程,并說明曲線C是什么曲線;

(2)若,求的面積.

(3)求面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案