12.已知函數(shù)f(x)=x2-2x+alnx有兩個極值點(diǎn)x1,x2,且x1<x2,則( 。
A.$f({x_1})<\frac{3+2ln2}{4}$B.$f({x_1})<-\frac{1+2ln2}{4}$C.$f({x_1})>\frac{1+2ln2}{4}$D.$f({x_1})>-\frac{3+2ln2}{4}$

分析 對f(x)求導(dǎo)數(shù),f′(x)=0有兩個不同的正實根x1,x2,由判別式以及根與系數(shù)的關(guān)系求出a的取值范圍;由x1、x2的關(guān)系,用x1把a(bǔ)表示出來,求出f(x1)的表達(dá)式最小值即可.

解答 解:由題意,f(x)=x2-2x+alnx的定義域為(0,+∞),
∴f′(x)=2x-2+$\frac{a}{x}$=$\frac{{2x}^{2}-2x+a}{x}$;
∵f(x)有兩個極值點(diǎn)x1,x2
∴f′(x)=0有兩個不同的正實根x1,x2,
∵2x2-2x+a=0的判別式△=4-8a>0,解得a<$\frac{1}{2}$,
∴x1+x2=1,x1•x2=$\frac{a}{2}$>0
∴0<a<$\frac{1}{2}$,x1=$\frac{1-\sqrt{1-2a}}{2}$,
∵0<x1<x2,且x1+x2=1
∴0<x1<$\frac{1}{2}$,a=2x1-2${{x}_{1}}^{2}$,
∴f(x1)=x2-2x1+(2x1-2${{x}_{1}}^{2}$)lnx1
令g(t)=t2-2t+(2t-2t2)lnt,其中0<t<$\frac{1}{2}$,
則g′(t)=2(1-2t)lnt.
當(dāng)t∈(0,$\frac{1}{2}$)時,g′(t)<0,
∴g(t)在(0,$\frac{1}{2}$)上是減函數(shù).
∴g(t)>g($\frac{1}{2}$)=-$\frac{3+2ln2}{4}$,
故f(x1)=g(x1)>-$\frac{3+2ln2}{4}$,
故選:D.

點(diǎn)評 本題考查了利用函數(shù)的性質(zhì)求參數(shù)取值與利用導(dǎo)數(shù)求取值范圍的問題,是容易出錯的題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.如圖,在正方體ABCD-A1B1C1D1中,E為BC1的中點(diǎn),則DE與面BCC1B1所成角的正切值為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在區(qū)間(1,2)上,不等式x2+mx+4>0有解,則m的取值范圍為( 。
A.m>-4B.m<-4C.m>-5D.m<-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.三棱錐P-ABC的四個頂點(diǎn)都在半徑為5的球面上,底面ABC所在的小圓面積為16π,則該三棱錐的高的最大值為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.給出下列命題:
(1)兩條平行線與同一平面所成角相等;
(2)與同一平面所成角相等的兩條直線平行;
(3)一條直線與兩個平行平面所成角相等;
(4)一條直線與兩個平面所成角相等,這兩個平面平行.
其中正確的命題是(1)(3).(填上所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.對2000名學(xué)生進(jìn)行身體健康檢查,用分層抽樣的辦法抽取容量為200的樣本,已知樣本中女生比男生少6人,則該校共有男生(  )
A.1030人B.970人C.97人D.103人

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)f(x)=ex(-x2+x+1),且對?$θ∈[0\;,\;\;\frac{π}{2}]$,|f(cosθ)-f(sinθ)|≤b恒成立,則b的最小值為( 。
A.e-1B.eC.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.如圖是某幾何體的三視圖,其中正視圖為正方形,俯視圖是腰長為2的等腰直角三角形,則該幾何體的體積為$\underline{\frac{8}{3}}$;表面積為6+4$\sqrt{2}+2\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)=$\left\{\begin{array}{l}{1-|x|,x≤1}\\{(x-1)^{2},x>1}\end{array}\right.$,函數(shù)g(x)=$\frac{4}{5}$-f(1-x),則函數(shù)y=f(x)-g(x)的零點(diǎn)的個數(shù)為( 。
A.2B.3C.4D.5

查看答案和解析>>

同步練習(xí)冊答案