【題目】某企業(yè)為打入國(guó)際市場(chǎng),決定從兩種產(chǎn)品中只選擇一種進(jìn)行投資生產(chǎn).已知投資生產(chǎn)這兩種產(chǎn)品的有關(guān)數(shù)據(jù)如下表:(單位:萬(wàn)美元)
其中年固定成本與年生產(chǎn)的件數(shù)無(wú)關(guān),為待定常數(shù),其值由生產(chǎn)產(chǎn)品的原材料價(jià)格決定,預(yù)計(jì).另外,年銷(xiāo)售件產(chǎn)品時(shí)需上交萬(wàn)美元的特別關(guān)稅.假設(shè)生產(chǎn)出來(lái)的產(chǎn)品都能在當(dāng)年銷(xiāo)售出去.
(1)寫(xiě)出該廠分別投資生產(chǎn)兩種產(chǎn)品的年利潤(rùn)與生產(chǎn)相應(yīng)產(chǎn)品的件數(shù)之間的函數(shù)關(guān)系,并指明其定義域;
(2)如何投資才可獲得最大年利潤(rùn)?請(qǐng)你做出規(guī)劃.
【答案】(1)詳見(jiàn)解析(2)詳見(jiàn)解析
【解析】
試題(1)生產(chǎn)產(chǎn)品的年利潤(rùn)每件產(chǎn)品銷(xiāo)售價(jià)銷(xiāo)售量 (年固定成本每件產(chǎn)品成本銷(xiāo)售量);同理,生產(chǎn)產(chǎn)品的年利潤(rùn)也可求得.(2)由,得,所以是增函數(shù),且,易知時(shí),有最大值;二次函數(shù),易求得當(dāng)時(shí),有最大值.將的最大值和的最大值作差,比較可得何時(shí)投資哪種產(chǎn)品獲得年利潤(rùn)最大.
試題解析:(1)設(shè)年銷(xiāo)售量為件,按利潤(rùn)的計(jì)算公式,得生產(chǎn)、兩產(chǎn)品的年利潤(rùn)分別為: ,且;, ,且.
(2)因?yàn)?/span>,所以,所以為增函數(shù),又且,所以時(shí),生產(chǎn)產(chǎn)品有最大利潤(rùn)為:(萬(wàn)美元).又, 且,所以時(shí),生產(chǎn)產(chǎn)品有最大利潤(rùn)為(萬(wàn)美元) ,作差比較:,令,得;令,得;令,得.所以當(dāng)時(shí),投資生產(chǎn)產(chǎn)品件獲得最大年利潤(rùn);當(dāng)時(shí),投資生產(chǎn)產(chǎn)品件獲得最大年利潤(rùn);當(dāng)時(shí),投資生產(chǎn)產(chǎn)品和產(chǎn)品獲得的最大利潤(rùn)一樣.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知矩形與矩形全等,二面角為直二面角,為中點(diǎn),與所成角為,且,則( ).
A. 1 B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)為自然對(duì)數(shù)的底數(shù).
(1)求函數(shù)的極值;
(2)設(shè)函數(shù),若存在實(shí)數(shù),使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓過(guò)點(diǎn),且離心率為.過(guò)拋物線上一點(diǎn)作的切線交橢圓于,兩點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存在直線,使得,若存在,求出的方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左,右焦點(diǎn)分別,過(guò)的直線l交橢圓于A,B兩點(diǎn),若的最大值為5,則b的值為( )
A. 1 B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知M(x1,y1)是橢圓=1(a>b>0)上任意一點(diǎn),F為橢圓的右焦點(diǎn).
(1)若橢圓的離心率為e,試用e,a,x1表示|MF|,并求|MF|的最值;
(2)已知直線m與圓x2+y2=b2相切,并與橢圓交于A、B兩點(diǎn),且直線m與圓的切點(diǎn)Q在y軸右側(cè),若a=4,求△ABF的周長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正四面體P-ABC中,D、E、F分別是AB、BC、CA的中點(diǎn),下列四個(gè)結(jié)論不成立的是 ( )
A. BC∥平面PDF B. DF⊥平面PAE
C. 平面PDF⊥平面PAE D. 平面PDE⊥平面ABC
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以下給出五個(gè)命題,其中真命題的序號(hào)為______
①函數(shù)在區(qū)間上存在一個(gè)零點(diǎn),則的取值范圍是或;
②“任意菱形的對(duì)角線一定相等”的否定是“菱形的對(duì)角線一定不相等”;
③,;
④若,則;
⑤“”是“成等比數(shù)列”的充分不必要條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知平面內(nèi)動(dòng)點(diǎn)到兩定點(diǎn)和的距離之和為4.
(Ⅰ)求動(dòng)點(diǎn)的軌跡的方程;
(Ⅱ)已知直線和的傾斜角均為,直線過(guò)坐標(biāo)原點(diǎn)且與曲線相交于, 兩點(diǎn),直線過(guò)點(diǎn)且與曲線是交于, 兩點(diǎn),求證:對(duì)任意, .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com