1.函數(shù)y=0.2x的圖象是( 。
A.B.C.D.

分析 利用指數(shù)函數(shù)的性質(zhì),判斷函數(shù)的圖形即可.

解答 解:函數(shù)y=0.2x是指數(shù)函數(shù),是減函數(shù),函數(shù)的圖象為:
故選:D.

點評 本題考查指數(shù)式的圖象的判斷,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在平行六面體ABCDA1B1C1D1中,設(shè)$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow$,$\overrightarrow{A{A}_{1}}$=$\overrightarrow{c}$,E,F(xiàn)分別是
AD1,BD的中點.
(1)用向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$表示$\overrightarrow{{D}_{1}B}$,$\overrightarrow{EF}$;
(2)若$\overrightarrow{{D}_{1}F}$=x$\overrightarrow{a}$+y$\overrightarrow$+z$\overrightarrow{c}$,求實數(shù)x,y,z的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在直角坐標(biāo)系xOy中,以M(-1,0)為圓心的圓與直線$x-\sqrt{3}y-3=0$相切.
(1)求圓M的方程;
(2)過點(0,3)的直線l被圓M截得的弦長為$2\sqrt{3}$,求直線l的方程.
(3)已知A(-2,0),B(2,0),圓M內(nèi)的動點P滿足|PA|•|PB|=|PO|2,求$\overrightarrow{PA}•\overrightarrow{PB}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.為了解寶雞市的交通狀況,現(xiàn)對其6條道路進行評估,得分分別為:5,6,7,8,9,10.規(guī)定評估的平均得分與全市的總體交通狀況等級如表:
評估的平均得分(0,6)[6,8)[8,10]
全市的總體交通狀況等級不合格合格優(yōu)秀
(1)求本次評估的平均得分,并參照上表估計該市的總體交通狀況等級;
(2)用簡單隨機抽樣方法從這6條道路中抽取2條,它們的得分組成一個樣本,求該樣本的平均數(shù)與總體的平均數(shù)之差的絕對值不超過0.5的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若函數(shù)y=${(\frac{1}{2})^{|x|}}$+m有零點,則實數(shù)m的取值范圍是[-1,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知從集合M到N的映射f滿足f(a)-f(b)-f(c)=0,且集合M={a,b,c},N={-1,0,1},那么映射f的個數(shù)為( 。
A.7B.5C.4D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知圓C:(x+1)2+y2=8,定點A(1,0),M為圓上一動點,線段MA的垂直平分線交MC于點N,設(shè)點N的軌跡為曲線E.
(1)求曲線E方程;
(2)若經(jīng)過F(0,2)的直線l交曲線E于不同的兩點G,H(點G在點F,H之間),且滿足$\overrightarrow{FG}=\frac{3}{5}\overrightarrow{FH}$,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)等比數(shù)列{an}的首項為a1,公比為q,則它的通項an=${a}_{1}{q}^{n-1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知在△ABC中,a,b,c分別為∠A,∠B,∠C的對邊,且滿足(2c-b)cosA=acosB
(1)求A的大;
(2)若a=2,求△ABC面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案