【題目】如圖,四邊形ABCD為直角梯形,試作出繞其各條邊所在的直線旋轉(zhuǎn)所得到的幾何體.

【答案】見解析

【解析】

確定旋轉(zhuǎn)直線,根據(jù)其余各邊與旋轉(zhuǎn)直線的關(guān)系,結(jié)合圓柱、圓錐、圓臺定義,即可求出結(jié)論.

以邊AD所在直線為軸旋轉(zhuǎn),形成的幾何體是一個(gè)圓臺,

如圖(1)所示.

以邊AB所在直線為軸旋轉(zhuǎn),形成的幾何體可以看作是由

一個(gè)圓錐和一個(gè)圓柱拼接而成的組合體,如圖(2)所示.

以邊CD所在直線為軸旋轉(zhuǎn),形成的幾何體可以看作是由

一個(gè)圓柱挖去一個(gè)同底圓錐而成的組合體,如圖(3)所示.

以邊BC所在直線為軸旋轉(zhuǎn),形成的幾何體可以看作是由

一個(gè)圓臺挖去一個(gè)同底(上底面)圓錐后再和一個(gè)同底(下底面)

圓錐拼接而成的組合體,如圖(4)所示.

1 2 3 4

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在進(jìn)行一項(xiàng)擲骰子放球游戲中,規(guī)定:若擲出1點(diǎn),甲盒中放一球;若擲出2點(diǎn)或3點(diǎn),乙盒中放一球;若擲出4點(diǎn)或5點(diǎn)或6點(diǎn),丙盒中放一球,前后共擲3次,設(shè)分別表示甲,乙,丙3個(gè)盒中的球數(shù).

()的概率;

()求隨機(jī)變量的概率分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某中學(xué)高一、高二、高三三個(gè)年級的青年學(xué)生志愿者人數(shù)分別為180,120,60,現(xiàn)采用分層抽樣的方法從中抽取6名同學(xué)去森林公園風(fēng)景區(qū)參加“保護(hù)鳥禽,愛我森林”宣傳活動.

1)應(yīng)從高一、高二、高三三個(gè)年級的學(xué)生志愿者中分別抽取多少人?

2)設(shè)抽取的6名同學(xué)分別用A,B,C,D,E,F表示,現(xiàn)從中隨機(jī)抽取2名學(xué)生承擔(dān)分發(fā)宣傳材料的工作設(shè)事件M=“抽取的2名學(xué)生來自高一年級”,求事件M發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【選修4-4:坐標(biāo)系與參數(shù)方程】

在平面直角坐標(biāo)系中,曲線的參數(shù)方程為: 為參數(shù), ),將曲線經(jīng)過伸縮變換: 得到曲線.

(1)以原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立坐標(biāo)系,求的極坐標(biāo)方程;

(2)若直線為參數(shù))與相交于兩點(diǎn),且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形和等邊三角形中, ,平面平面

(1)在上找一點(diǎn),使,并說明理由;

(2)在(1)的條件下,求平面與平面所成銳二面角余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

討論函數(shù)的單調(diào)性;

當(dāng)時(shí),求函數(shù)在區(qū)間上的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】工廠車間某部門有8個(gè)小組,在一次技能考試中成績情況分析如下:

小組

1

2

3

4

5

6

7

8

大于90分人數(shù)

6

6

7

3

5

3

3

7

不大于90分人數(shù)

39

39

38

42

40

42

42

38

1)求90分以上人數(shù)對小組序號的線性回歸方程;

附:回歸方程為,其中,.本題,.

2)能否在犯錯誤的概率不超過0.01的前提下認(rèn)為7組與8組的成績是否優(yōu)秀(大于90分)與小組有關(guān)系.附部分臨界值表:

0.05

0.025

0.010

0.005

0.001

3.841

5.024

6.635

7.879

10.828

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知

(1)當(dāng)=-1時(shí),求的單調(diào)區(qū)間及值域;

(2)若在()上為增函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案