設(shè)A,B分別為橢圓=1(a>b>0)的左、右頂點(diǎn),(1,)為橢圓上一點(diǎn),橢圓長(zhǎng)半軸長(zhǎng)等于焦距.
(1)求橢圓的方程;
(2)設(shè)P(4,x)(x≠0),若直線AP,BP分別與橢圓相交于異于A,B的點(diǎn)M,N,求證:∠MBN為鈍角.

(1)=1    (2)見(jiàn)解析

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓過(guò)和點(diǎn)
(1)求橢圓的方程;
(2)設(shè)過(guò)點(diǎn)的直線與橢圓交于兩點(diǎn),且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在平面直角坐標(biāo)系中,已知拋物線,在此拋物線上一點(diǎn)到焦點(diǎn)的距離是3.
(1)求此拋物線的方程;
(2)拋物線的準(zhǔn)線與軸交于點(diǎn),過(guò)點(diǎn)斜率為的直線與拋物線交于、兩點(diǎn).是否存在這樣的,使得拋物線上總存在點(diǎn)滿足,若存在,求的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,設(shè)橢圓的左右焦點(diǎn)為,上頂點(diǎn)為,點(diǎn)關(guān)于對(duì)稱,且
(1)求橢圓的離心率;
(2)已知是過(guò)三點(diǎn)的圓上的點(diǎn),若的面積為,求點(diǎn)到直線距離的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,兩焦點(diǎn)F1,F(xiàn)2之間的距離為2,橢圓上第一象限內(nèi)的點(diǎn)P滿足PF1⊥PF2,且△PF1F2的面積為1.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若橢圓C的右頂點(diǎn)為A,直線l:y=kx+m(k≠0)與橢圓C交于不同的兩點(diǎn)M,N,且滿足AM⊥AN.求證:直線l過(guò)定點(diǎn),并求出定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知中心在原點(diǎn)的雙曲線C的右焦點(diǎn)為(2,0),右頂點(diǎn)為(,0).
(1)求雙曲線C的方程;
(2)若直線l:y=kx+與雙曲線C恒有兩個(gè)不同的交點(diǎn)A和B,且·>2(其中O為原點(diǎn)),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓過(guò)點(diǎn),且離心率為.斜率為的直線與橢圓交于兩點(diǎn),以為底邊作等腰三角形,頂點(diǎn)為.
(1)求橢圓的方程;
(2)求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓C:)的左焦點(diǎn)為,離心率為.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)O為坐標(biāo)原點(diǎn),T為直線上任意一點(diǎn),過(guò)F作TF的垂線交橢圓C于點(diǎn)P,Q.當(dāng)四邊形OPTQ是平行四邊形時(shí),求四邊形OPTQ的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓經(jīng)過(guò)點(diǎn),其離心率
(1)求橢圓的方程;
(2)過(guò)坐標(biāo)原點(diǎn)作不與坐標(biāo)軸重合的直線交橢圓兩點(diǎn),過(guò)軸的垂線,垂足為,連接并延長(zhǎng)交橢圓于點(diǎn),試判斷隨著的轉(zhuǎn)動(dòng),直線的斜率的乘積是否為定值?說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案