11.飛機(jī)從甲地以北偏西15°的方向飛行1400km到達(dá)乙地,再從乙地以南偏東75°的方向飛行1400km到達(dá)丙地.試畫出飛機(jī)飛行的位移示意圖,并說明丙地在甲地的什么方向?丙地距甲地多遠(yuǎn)?

分析 作出方位示意圖,構(gòu)造等腰三角形,解這個(gè)三角形即可得出答案.

解答 解:設(shè)甲地為A,乙地為B,丙地為C,作出示意圖如圖所示,
則AB=BC=1400m,∠NAB=∠SBA=15°,∠SBC=75°,
∴∠ABC=∠SBC-∠SBA=60°,
∴△ABC是等邊三角形,
∴∠BAC=60°,AC=1400km,
∴∠NAC=∠BAC-∠BAN=45°.
答:丙地在甲地北偏東45°方向,丙地距甲地1400km.

點(diǎn)評(píng) 本題考查了解三角形的實(shí)際應(yīng)用,畫出草圖是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.四棱柱ABCD-A1B1C1D1中,AB∥CD,CD=2,DD1=AB=1,P,Q為CC1,C1D1的中點(diǎn),求證:
(1)AQ∥平面BCC1B1
(2)AC∥平面BPQ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知p:?x∈R,sinx+2cosx=3,q:?x∈R,4x+2x+1+1>0,則下列命題中真命題的是( 。
A.p∧qB.(¬p)∧qC.p∧(¬q)D.p∨(¬q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知的等比數(shù)列{an}中,a1a2a3=5,a4a5a6=10,則a7a8a9=20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)$f(x)=lnx+tanα(α∈(0,\frac{π}{2}))$的導(dǎo)函數(shù)為f′(x),若存在0<x0<1使得f′(x0)=f(x0)成立,則實(shí)數(shù)α的取值范圍是($\frac{π}{4}$,$\frac{π}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)x,y滿足約束條件$\left\{{\begin{array}{l}{x-y-1≥0}\\{3x-2y-6≤0}\\{x≥0}\\{y≥0}\end{array}}\right.$,若目標(biāo)函數(shù)$z=\frac{1}{m}\sqrt{{x^2}+{y^2}-9}(m>0)$的最大值為2,則$y=cos(mx+\frac{π}{3})$的圖象向左平移$\frac{π}{3}$后的表達(dá)式為(  )
A.$y=cos(2x+\frac{2π}{3})$B.y=cos2xC.y=-cos2xD.$y=cos(2x-\frac{π}{3})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知i1=i,i2=-1,i3=-i,i4=1,i5=i,由此可猜想i2016=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.若($\sqrt{x}$+$\frac{1}{2\root{4}{x}}$)n的展開式中前三項(xiàng)系數(shù)成等差數(shù)列.求:
(1)展開式中含x的一次冪的項(xiàng);
(2)展開式中所有x的有理項(xiàng);
(3)展開式中系數(shù)最大的項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)f(x)=$\left\{\begin{array}{l}1+|lg(x-1)|,x>1\\ g(x),x<1\end{array}$的圖象關(guān)于點(diǎn)P對(duì)稱,且函數(shù)y=f(x+1)-1為奇函數(shù),則下列結(jié)論:
①點(diǎn)P的坐標(biāo)為(1,1);
②當(dāng)x∈(-∞,0)時(shí),g(x)≤-1恒成立;
③關(guān)于x的方程f(x)=a,a∈R有且只有兩個(gè)實(shí)根,
其中正確結(jié)論的個(gè)數(shù)為( 。
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案