已知函數(shù),.
(Ⅰ)若,求函數(shù)在區(qū)間上的最值;
(Ⅱ)若恒成立,求的取值范圍. 注:是自然對(duì)數(shù)的底數(shù).
(Ⅰ)最小值,最大值;(Ⅱ) .
解析試題分析:(Ⅰ)將代入,得到.由于要去絕對(duì)值,所以將區(qū)間分為與兩段,分別得到解析式,從而得到導(dǎo)函數(shù)在上大于0,在上小于0.即函數(shù)在區(qū)間上單調(diào)遞減,在上單調(diào)遞增.在根據(jù)單調(diào)性即可求出最值;(Ⅱ) 函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/3a/7/zkhao1.png" style="vertical-align:middle;" />,得,再分與兩種情況討論.其中時(shí),為去絕對(duì)值,再分與兩種情況予以討論.再綜合各種情況得到滿足條件的的取值范圍是.
試題解析:(Ⅰ) 若,則.
當(dāng)時(shí),,
,
所以函數(shù)在上單調(diào)遞增;
當(dāng)時(shí),,
.
所以函數(shù)在區(qū)間上單調(diào)遞減,
所以在區(qū)間上有最小值,又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/a4/2/1vhb21.png" style="vertical-align:middle;" />,
,而,
所以在區(qū)間上有最大值 .5分
(Ⅱ) 函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/3a/7/zkhao1.png" style="vertical-align:middle;" />.
由,得. (*)
(。┊(dāng)時(shí),,,
不等式(*)恒成立,所以; .7分
(ⅱ)當(dāng)時(shí),
①當(dāng)時(shí),由得,即,
現(xiàn)令, 則,
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/ab/b/sja12.png" style="vertical-align:middle;" />,所以,故在上單調(diào)遞增,
從而的最小值為,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/b8/5/bzw4d2.png" style="vertical-align:middle;" />恒成立等價(jià)于,
所以; .11
②當(dāng)時(shí),
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),其中.
(1)若,求曲線在點(diǎn)處的切線方程;
(2)求函數(shù)的極大值和極小值,若函數(shù)有三個(gè)零點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),.
(1)若對(duì)任意的實(shí)數(shù),函數(shù)與的圖象在處的切線斜率總相等,求的值;
(2)若,對(duì)任意,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)(均為正常數(shù)),設(shè)函數(shù)在處有極值.
(1)若對(duì)任意的,不等式總成立,求實(shí)數(shù)的取值范圍;
(2)若函數(shù)在區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(1設(shè)
(1)當(dāng)時(shí),求f(x)的單調(diào)區(qū)間;
(2)求f(x)的零點(diǎn)個(gè)數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),在上的減函數(shù).
(Ⅰ)求曲線在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)若在上恒成立,求的取值范圍;
(Ⅲ)關(guān)于的方程()有兩個(gè)根(無(wú)理數(shù)e=2.71828),求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),其中,為參數(shù),且.
(1)當(dāng)時(shí),判斷函數(shù)是否有極值;
(2)要使函數(shù)的極小值大于零,求參數(shù)的取值范圍;
(3)若對(duì)(2)中所求的取值范圍內(nèi)的任意參數(shù),函數(shù)在區(qū)間內(nèi)都是增函數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(1)當(dāng)時(shí),試確定函數(shù)在其定義域內(nèi)的單調(diào)性;
(2)求函數(shù)在上的最小值;
(3)試證明:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com