【題目】已知A=B=R,x∈A,y∈B,f:x→y=ax+b是從A到B的映射,若1和8的原象分別是3和10,則5在f下的象是(
A.3
B.4
C.5
D.6

【答案】A
【解析】解:A=B=R,x∈A,y∈B,f:x→y=ax+b是從A到B的映射,
又1和8的原象分別是3和10,
,
解得: ,
即f:x→y=x﹣2
5在f下的象可得f(5)=1×5﹣2=3,
故選A;
【考點(diǎn)精析】根據(jù)題目的已知條件,利用映射的相關(guān)定義的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握對(duì)于映射f:A→B來(lái)說(shuō),則應(yīng)滿足:(1)集合A中的每一個(gè)元素,在集合B中都有象,并且象是唯一的;(2)集合A中不同的元素,在集合B中對(duì)應(yīng)的象可以是同一個(gè);(3)不要求集合B中的每一個(gè)元素在集合A中都有原象;注意:映射是針對(duì)自然界中的所有事物而言的,而函數(shù)僅僅是針對(duì)數(shù)字來(lái)說(shuō)的.所以函數(shù)是映射,而映射不一定的函數(shù).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),且當(dāng)x≤0時(shí),f(x)=x2+2x.
(1)現(xiàn)已畫(huà)出函數(shù)f(x)在y軸左側(cè)的圖象,如圖所示,請(qǐng)補(bǔ)出完整函數(shù)f(x)的圖象,并根據(jù)圖象寫(xiě)出函數(shù)f(x)的增區(qū)間;

(2)寫(xiě)出函數(shù)f(x)的解析式和值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】頂點(diǎn)在原點(diǎn),焦點(diǎn)在x軸正半軸的拋物線,經(jīng)過(guò)點(diǎn)(3,6),
(1)求拋物線截直線y=2x﹣6所得的弦長(zhǎng).
(2)討論直線y=kx+1與拋物線的位置關(guān)系,并求出相應(yīng)的k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列命題:
①直線l的方向向量為 =(1,﹣1,2),直線m的方向向量 =(2,1,﹣ ),則l與m垂直;
②直線l的方向向量 =(0,1,﹣1),平面α的法向量 =(1,﹣1,﹣1),則l⊥α;
③平面α、β的法向量分別為 =(0,1,3), =(1,0,2),則α∥β;
④平面α經(jīng)過(guò)三點(diǎn)A(1,0,﹣1),B(0,1,0),C(﹣1,2,0),向量 =(1,u,t)是平面α的法向量,則u+t=1.
其中真命題的是 . (把你認(rèn)為正確命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知冪函數(shù)f(x)的圖象經(jīng)過(guò)點(diǎn)(3,
(1)求函數(shù)f(x)的解析式;
(2)判斷函數(shù)f(x)在(0,+∞)上的單調(diào)性,并用定義證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在長(zhǎng)方體ABCD﹣A1B1C1D1中,E、M、N分別是BC、AE、D1C的中點(diǎn),AD=AA1 , AB=2AD
(Ⅰ)證明:MN∥平面ADD1A1
(Ⅱ)求直線AD與平面DMN所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A={x|x2﹣5x﹣6<0},集合B={x|6x2﹣5x+1≥0},集合
(1)求A∩B;
(2)若A∪C=C,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2+2x|x﹣a|,其中a∈R.
(1)當(dāng)a=﹣1時(shí),在所給坐標(biāo)系中作出f(x)的圖象;
(2)對(duì)任意x∈[1,2],函數(shù)g(x)=﹣x+14的圖象恒在函數(shù)f(x)圖象的上方,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(I)求函數(shù)的單調(diào)區(qū)間;

,使不等式成立,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案