8.已知圓柱M的底面半徑為2,高為$\frac{2\sqrt{3}}{3}$,圓錐N的底面直徑和母線長相等,若圓柱M 和圓錐N的體積相同,則圓錐N的底面半徑為2.

分析 設(shè)圓錐N的底面直徑為2r,則高為$\sqrt{3}$r,利用圓柱M的底面半徑為2,高為$\frac{2\sqrt{3}}{3}$,圓柱M和圓錐N的體積相同,建立方程能求出結(jié)果.

解答 解:設(shè)圓錐N的底面直徑為2r,則高為$\sqrt{3}$r,
∵圓柱M的底面半徑為2,高為$\frac{2\sqrt{3}}{3}$,圓柱M和圓錐N的體積相同,
∴$π×{2}^{2}×\frac{2\sqrt{3}}{3}$=$\frac{1}{3}×π{r}^{2}×\sqrt{3}r$,
解得r=2,
∴圓錐N的底面半徑為2.
故答案為:2.

點評 本題考查圓柱、圓錐的體積公式,考查學(xué)生的計算能力,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在△ABC中,已知△ABC的面積為3$\sqrt{15}$,b-c=2,cosA=-$\frac{1}{4}$,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列函數(shù)中,最小值為4的函數(shù)是( 。
A.y=x+$\frac{1}{x}$B.y=sinx+$\frac{4}{sinx}$(0<x<π)
C.y=ex+4e-xD.y=log3x+4logx3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.曲線y=$\sqrt{2-{x}^{2}}$與直線y=-x+b有兩個不同的交點,則b的取值范圍為( 。
A.-1<b<2B.$\sqrt{2}$≤b<2C.$\sqrt{2}$≤b≤2D.-2≤b≤2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下列四個結(jié)論:
①兩條直線和同一個平面垂直,則這兩條直線平行;
②兩條直線沒有公共點,則這兩條直線平行;
③兩條直線都和第三條直線垂直,則這兩條直線平行;
④一條直線和一個平面內(nèi)任意直線沒有公共點,則這條直線和這個平面平行.
其中正確的個數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若橢圓$\frac{x^2}{9}$+$\frac{y^2}{5}$=1上點P到其右焦點的距離為2,則點P到其左準(zhǔn)線的距離為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.給出下列幾種說法:
①若logab•log3a=1,則b=3;
②若a+a-1=3,則a-a-1=$\sqrt{5}$;
③f(x)=log(x+$\sqrt{{x}^{2}+1}$為奇函數(shù);
④f(x)=$\frac{1}{x}$為定義域內(nèi)的減函數(shù);
⑤若函數(shù)y=f(x)是函數(shù)y=ax(a>0且a≠1)的反函數(shù),且f(2)=1,則f(x)=log${\;}_{\frac{1}{2}}$x,其中說法正確的序號為①③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)$f(x)=\sqrt{x+3}+\frac{1}{x-2}$
(1)求函數(shù)f(x)的定義域;     
(2)求f(1)+f(-3)的值;
(3)求f(a+1)的值(其中a>-4且a≠1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知曲線C1:$\left\{\begin{array}{l}{x=1+t}\\{y=-3-\frac{3}{4}t}\end{array}\right.$(t為參數(shù))與曲線C2:ρ2-4ρ•cosθ-21=0交于A,B兩點,求線段AB的長,并說明C1,C2分別是什么曲線?

查看答案和解析>>

同步練習(xí)冊答案