A. | B. | C. | D. |
分析 由已知函數(shù)解析式可得函數(shù)為偶函數(shù),且在(1,+∞)上為增函數(shù),結(jié)合選項得答案.
解答 解:∵函數(shù)f(x)=lg(|x|-1)的定義域為{x|x≠±1},
且f(-x)=lg(|-x|-1)=lg(|x|-1)=f(x),
∴函數(shù)為偶函數(shù);
又當(dāng)x>1時,f(x)=lg(x-1)為(1,+∞)上的增函數(shù),
∴函數(shù)f(x)=lg(|x|-1)的大致圖象是:
故選:B.
點評 本題考查函數(shù)的圖象,考查復(fù)合函數(shù)的奇偶性與單調(diào)性的判定,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1365石 | B. | 336石 | C. | 168石 | D. | 134石 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (2,4) | B. | (1,3) | C. | (1,2) | D. | (2,3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 24+8$\sqrt{2}$+8$\sqrt{5}$ | B. | 20+8$\sqrt{2}$+4$\sqrt{5}$ | C. | 20+8$\sqrt{5}$+4$\sqrt{2}$ | D. | 20+4$\sqrt{2}$+4$\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,1] | B. | $({-\frac{1}{3},1}]$ | C. | [1,+∞) | D. | $({-∞,\frac{1}{2}}]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com