(2011•昌平區(qū)二模)數(shù)列{an}對任意n∈N*,滿足an+1=an+3,且a3=8,則S10等于( 。
分析:由an+1=an+3,知{an}是公差d=3的等差數(shù)列,由a3=a1+2d=8,知a1=8-2d=8-6=2,由此能求出S10的值.
解答:解:∵an+1=an+3,
∴an+1-an=3,
∴{an}是公差d=3的等差數(shù)列,
∵a3=a1+2d=8,
∴a1=8-2d=8-6=2,
S10=10a1+
10×9
2
d

=10×2+5×9×3
=155.
故選A.
點評:本題考查等差數(shù)列的前n項和的計算,是基礎題.解題時要認真審題,仔細解答.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2011•昌平區(qū)二模)已知集合A={x|x≥3},B={1,2,3,4},則A∩B=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•昌平區(qū)二模)一個正方形的內(nèi)切圓半徑為2,向該正方形內(nèi)隨機投一點P,點P恰好落在圓內(nèi)的概率是
π
4
π
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•昌平區(qū)二模)如圖所示,正方形AA1D1D與矩形ABCD所在平面互相垂直,AB=2AD=2,點E為AB的中點.
(1)求證:BD1∥平面A1DE;
(2)求證:D1E⊥A1D;
(3)在線段AB上是否存在點M,使二面角D1-MC-D的大小為
π6
?若存在,求出AM的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•昌平區(qū)二模)已知集合A={x|x≥3},B={x|(x-2)(x-4)<0},則A∩B=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•昌平區(qū)二模)若不等式組
x+2y-5≤0
x≥1
y≥1
表示的平面區(qū)域是一個三角形,則此三角形的面積是
1
1
;若x,y滿足上述約束條件,則z=x-y的最大值是
2
2

查看答案和解析>>

同步練習冊答案