若將一個(gè)圓錐的側(cè)面沿一條母線剪開,其展開圖是半徑為2cm的半圓,則該圓錐的體積為
 
考點(diǎn):旋轉(zhuǎn)體(圓柱、圓錐、圓臺(tái))
專題:空間位置關(guān)系與距離
分析:根據(jù)半圓的周長等于圓錐底面圓的周長求出底面圓的半徑,再根據(jù)圓錐的軸截面圖形求高即可,進(jìn)而代入圓錐的體積公式,可得答案.
解答: 解:設(shè)圓錐的底面圓半徑為r,
由已知可得:圓錐的母線l=2cm,
則2πr=2π⇒r=1cm,
∴h=
l2-r2
=
22-12
=
3
cm.
故圓錐的體積V=
1
3
πr2•h
=
3
π
3
cm3
故答案是:
3
π
3
cm3
點(diǎn)評(píng):本題考查圓錐的側(cè)面展開圖及圓錐的軸截面,圓錐的體積公式,難度不大,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=(2x3-
1
2x2
10
(Ⅰ)求f(x)展開式中的常數(shù)項(xiàng);
(Ⅱ)求f(x)展開式中的二項(xiàng)式系數(shù)最大的項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是三次項(xiàng)系數(shù)為
a
3
的三次函數(shù),且不等式f′(x)-9x>0的解集為(1,2)
(1)若方程f′(x)+7a=0有兩個(gè)相等的實(shí)根,求a的值
(2)若函數(shù)g(x)=f(x)+ax在[1,3]上單調(diào)遞增,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某項(xiàng)考試按科目A、科目B依次進(jìn)行,只有當(dāng)科目A成績合格時(shí),才可繼續(xù)參加科目B的考試.已知每個(gè)科目只允許有一次補(bǔ)考機(jī)會(huì),兩個(gè)科目成績均合格方可獲得證書.現(xiàn)某人參加這項(xiàng)考試,科目A每次考試成績合格的概率均為
2
3
,科目B每次考試成績合格的概率均為
1
2
.假設(shè)各次考試成績合格與否均不影響.
(1)求他不需要補(bǔ)考就可獲得證書的概率;
(2)在這項(xiàng)考試過程中,假設(shè)他不放棄所有的考試機(jī)會(huì),記他參加考試的次數(shù)為ξ,求ξ的分布列和數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x(x-a)在x=1處取得極值,則a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
tanx+
3
的定義域?yàn)?div id="hjdvtx7" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是偶函數(shù),當(dāng)x≤0時(shí),f(x)=x(x+1),則當(dāng)x>0時(shí)f(x)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知球O的半徑為2cm,則球O的表面積為
 
cm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

f(x)為R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=2x+2x+b(b為常數(shù))(b為常數(shù)),則f(-1)=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案