8.已知函數(shù)f(x)是定義在R上的偶函數(shù),且對(duì)任意x∈R,都有f(x-1)=f(x+3).當(dāng)x∈[4,5]時(shí),f(x)=2x+1,設(shè)函數(shù)f(x)在區(qū)間[-2,0]上的反函數(shù)為f-1(x),則f-1(19)的值為( 。
A.-log23B.-2log23C.1-log23D.3-2log23

分析 由f(x-1)=f(x+3)可確定函數(shù)周期,進(jìn)而由條件當(dāng)x∈[4,5]時(shí),f(x)=2x+1推導(dǎo)x∈[0,1]時(shí)f(x)解析式,并利用偶函數(shù)條件求出函數(shù)f(x)在區(qū)間[-1,0]上的解析式,并令x∈[-1,0]時(shí)f(x)=19,解出自變量x的值即為f-1(19)的值.

解答 解:由f(x-1)=f(x+3)得f(x)=f(x+4),
所以函數(shù)周期為T=4,
所以x∈[0,1]時(shí),x+4∈[4,5],所以f(x)=f(x+4)=2x+4+1,
又函數(shù)f(x)為偶函數(shù),所以x∈[-1,0]時(shí)-x∈[0,1],則f(x)=f(-x)=2-x+4+1,
令f(x)=2-x+4+1=19,解得
x=4-log218=3-2log23,
從而f-1(19)=3-2log23
故選擇D.

點(diǎn)評(píng) 本題主要考查函數(shù)的周期性和奇偶性,利用函數(shù)周期性和奇偶性,求函數(shù)解析式,并結(jié)合反函數(shù)知識(shí)考查了對(duì)數(shù)函數(shù)值的計(jì)算問題,難度較大.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.原命題為“若a>b,則ac2>bc2”關(guān)于其逆命題,否命題,逆否命題 真假性的判斷依次如下,正確的是( 。
A.真,真,真B.真,真,假C.假,假,真D.假,假,假

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)集合A={x|x2+3x+2=0},B={x|x2+(m+1)x+m=0}
(1)用列舉法表示集合A
(2)若B⊆A,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若函數(shù)y=-ax與y=$\frac{x}$在(-∞,0)上都是減函數(shù),則y=ax2+bx在(-∞,0)上是(  )
A.減函數(shù)B.增函數(shù)C.先增后減D.先減后增

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,四邊形ABCD是正方形,PD∥MA,MA⊥AD,PM⊥平面 CDM,MA=$\frac{1}{2}$PD=1
(1)求證:平面ABCD⊥平面AMPD
(2)若BC與PM所成角為45°,求二面角M-BP-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.119和34的最大公約數(shù)是17.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知點(diǎn)M(2,-3,1)關(guān)于原點(diǎn)對(duì)稱的對(duì)稱點(diǎn)為N,則|MN|等于(  )
A.2$\sqrt{13}$B.2$\sqrt{14}$C.52D.56

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.定義在R上的函數(shù)f(x)對(duì)任意兩個(gè)不相等實(shí)數(shù)a、b,且a<b總有f(a)<f(b)成立,則必有( 。
A.f(x)先增加后減少B.f(x)先減少后增加C.f(x)在R上是增函數(shù)D.f(x)在R上是減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=ex-ln(x+m).
(1)若x=0是f(x)的極值點(diǎn),求m,并討論f(x)的單調(diào)性;
(2)當(dāng)m=2時(shí),證明f(x)>0.

查看答案和解析>>

同步練習(xí)冊答案