【題目】日晷是中國(guó)古代用來(lái)測(cè)定時(shí)間的儀器,利用與晷面垂直的晷針投射到晷面的影子來(lái)測(cè)定時(shí)間.把地球看成一個(gè)球(球心記為O),地球上一點(diǎn)A的緯度是指OA與地球赤道所在平面所成角,點(diǎn)A處的水平面是指過(guò)點(diǎn)A且與OA垂直的平面.在點(diǎn)A處放置一個(gè)日晷,若晷面與赤道所在平面平行,點(diǎn)A處的緯度為北緯40°,則晷針與點(diǎn)A處的水平面所成角為( )
A.20°B.40°
C.50°D.90°
【答案】B
【解析】
畫(huà)出過(guò)球心和晷針?biāo)_定的平面截地球和晷面的截面圖,根據(jù)面面平行的性質(zhì)定理和線面垂直的定義判定有關(guān)截線的關(guān)系,根據(jù)點(diǎn)處的緯度,計(jì)算出晷針與點(diǎn)處的水平面所成角.
畫(huà)出截面圖如下圖所示,其中是赤道所在平面的截線;是點(diǎn)處的水平面的截線,依題意可知;是晷針?biāo)谥本.是晷面的截線,依題意依題意,晷面和赤道平面平行,晷針與晷面垂直,
根據(jù)平面平行的性質(zhì)定理可得可知、根據(jù)線面垂直的定義可得..
由于,所以,
由于,
所以,也即晷針與點(diǎn)處的水平面所成角為.
故選:B
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以平面直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸非負(fù)半軸為極軸,并在兩種坐標(biāo)系中取相同的長(zhǎng)度單位,建立極坐標(biāo)系.曲線的極坐標(biāo)方程為,曲線的參數(shù)方程為,(為參數(shù)).
(1)求曲線的直角坐標(biāo)方程及的普通方程;
(2)已知點(diǎn)PQ為曲線與曲線的交點(diǎn),W為參數(shù)方程(為參數(shù))曲線上一點(diǎn),求點(diǎn)W到直線的距離d的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)在區(qū)間上存在兩個(gè)不同零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)集合S,T,SN*,TN*,S,T中至少有兩個(gè)元素,且S,T滿足:
①對(duì)于任意x,yS,若x≠y,都有xyT
②對(duì)于任意x,yT,若x<y,則S;
下列命題正確的是( )
A.若S有4個(gè)元素,則S∪T有7個(gè)元素
B.若S有4個(gè)元素,則S∪T有6個(gè)元素
C.若S有3個(gè)元素,則S∪T有5個(gè)元素
D.若S有3個(gè)元素,則S∪T有4個(gè)元素
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】政府工作報(bào)告指出,2019年我國(guó)深入實(shí)施創(chuàng)新驅(qū)動(dòng)發(fā)展戰(zhàn)略,創(chuàng)新能力和效率進(jìn)一步提升;2020年要提升科技支撐能力,健全以企業(yè)為主體的產(chǎn)學(xué)研一體化創(chuàng)新機(jī)制,某企業(yè)為了提升行業(yè)核心競(jìng)爭(zhēng)力,逐漸加大了科技投入;該企業(yè)連續(xù)5年來(lái)的科技投入x(百萬(wàn)元)與收益y(百萬(wàn)元)的數(shù)據(jù)統(tǒng)計(jì)如下:
科技投入x | 1 | 2 | 3 | 4 | 5 |
收益y | 40 | 50 | 60 | 70 | 90 |
(1)請(qǐng)根據(jù)表中數(shù)據(jù),建立y關(guān)于x的線性回歸方程;
(2)按照(1)中模型,已知科技投入8百萬(wàn)元時(shí)收益為140百萬(wàn)元,求殘差(殘差真實(shí)值-預(yù)報(bào)值).
參考數(shù)據(jù):回歸直線方程,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為加強(qiáng)環(huán)境保護(hù),治理空氣污染,環(huán)境監(jiān)測(cè)部門對(duì)某市空氣質(zhì)量進(jìn)行調(diào)研,隨機(jī)抽查了天空氣中的和濃度(單位:),得下表:
(1)估計(jì)事件“該市一天空氣中濃度不超過(guò),且濃度不超過(guò)”的概率;
(2)根據(jù)所給數(shù)據(jù),完成下面的列聯(lián)表:
(3)根據(jù)(2)中的列聯(lián)表,判斷是否有的把握認(rèn)為該市一天空氣中濃度與濃度有關(guān)?
附:,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在①;②;③,這三個(gè)條件中任選一個(gè),補(bǔ)充在下面問(wèn)題中,然后解答補(bǔ)充完整的題目.
在△中,內(nèi)角A,B,C所對(duì)的邊分別為.且滿足_________.
(1)求;
(2)已知,△的外接圓半徑為,求△的邊AB上的高.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱錐中,,.
(Ⅰ)若點(diǎn)為的中點(diǎn),求證:∥平面;
(Ⅱ)當(dāng)平面平面時(shí),求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)當(dāng)a=-2時(shí),求函數(shù)f(x)的極值;
(2)若ln[e(x+1)]≥2- f(-x)對(duì)任意的x∈[0,+∞)成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com