四面體S-ABC中,各個側(cè)面都是邊長為a的正三角形,E,F(xiàn)分別是SC和AB的中點(diǎn),則異面直線EF與SA所成的角等于
 
考點(diǎn):異面直線及其所成的角
專題:空間角
分析:取AC中點(diǎn)O,連結(jié)EO,F(xiàn)O,BE,由題意得∠OEF是異面直線EF與SA所成的角(或所成角的補(bǔ)角),由此能求出異面直線EF與SA所成的角.
解答: 解:如圖,取AC中點(diǎn)O,
連結(jié)EO,F(xiàn)O,BE,
則題意知EO∥SA,F(xiàn)O∥BC,
∴∠OEF是異面直線EF與SA所成的角(或所成角的補(bǔ)角),
∵EO=FO=
1
2
a
,BE=
a2-(
1
2
a)2
=
3
2
a
,
EF=
BE2-BF2
=
3
4
a2-
1
4
a2
=
2
2
a
,
cos∠OEF=
OE2+EF2-OF2
2OE•EF
=
1
4
a2+
1
2
a2-
1
4
a2
2•
1
2
a•
2
2
a
=
2
2
,
∴∠OEF=
π
4

∴異面直線EF與SA所成的角等于
π
4

故答案為:
π
4
點(diǎn)評:本題考查異面直線所成角的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意空間思維能力的培養(yǎng).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,其中a、b是方程x2-11x+12=0的兩個根,且3cos(A+B)+2=0.求:
(1)△ABC的面積 
(2)c的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于有理數(shù)a,b(a+b≠0)定義運(yùn)算“*”如下:a*b=
ab
a+b
,求2*3和(-3)*(-4)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x2+ax+1在(-∞,2]上單調(diào)遞減,則實(shí)數(shù)a的范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知切線C的極坐標(biāo)方程是ρ=2,以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線L的參數(shù)方程為
x=1-
1
2
t
y=2+
3
2
t
(t為參數(shù)).
(1)寫出直線L與曲線C的直角坐標(biāo)系下的方程;
(2)設(shè)曲線C經(jīng)過伸縮變換
x′=x
y′=2y
,得到曲線C′,判斷L與切線C′交點(diǎn)的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線一焦點(diǎn)坐標(biāo)為(0,-5),一漸近線方程為3x+4y=0,則雙曲線的離心率為(  )
A、
3
4
B、
5
4
C、
5
3
5
4
D、
5
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的前n項(xiàng)和為Sn,存在常數(shù)A,B,C,使得an+Sn=An2+Bn+C對任意正整數(shù)n都成立.
(1)若數(shù)列{an}為等差數(shù)列,求3A-B+C的值;
(2)若A=-
1
2
,B=-
3
2
,C=1,設(shè)bn=an+n數(shù)列{nbn}的前n項(xiàng)和為Tn,求Tn;
(3)若C=0,{an}是首項(xiàng)為1的等差數(shù)列,設(shè)M=
100
i=1
1+
1
ai2
+
1
ai+12
,求不超過M的最大整數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=-|x|在區(qū)間[a,+∞﹚上為減函數(shù),則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
3
sin
πx
m
,若存在f(x)的極值點(diǎn)x0滿足x02+[f(x0)]2<m2,則m的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案