精英家教網 > 高中數學 > 題目詳情
已知正項數列{an}滿足
a
 
1
=P(0<P<1),且
a
 
n+1
=
a
 
n
a
 
n
+1
,
(1)求數列的通項an
(2)求證:
a
 
1
2
+
a
 
2
3
+
a
 
3
4
+…+
a
 
n
n+1
<1
分析:(1)由已知an+1=
an
an+1
可得,
1
an+1
=
an+1
an
=
1
an
+1
1
a1
=
1
p
1
an+1
-
1
an
=1

數列{
1
an
}是以
1
p
為首項,以1為公差的等差數列,從而可求
(2)由(1)可得an=
1
n-1+
1
p
結合0<P<1可得
an
n+1
=
1
(n+1)(n-1+
1
p
)
1
n(n+1)
=
1
n
-
1
n+1
,利用裂項求和可證
解答:解:由已知an+1=
an
an+1
可得,
1
an+1
=
an+1
an
=
1
an
+1
1
a1
=
1
p

1
an+1
-
1
an
=1

數列{
1
an
}是以
1
p
為首項,以1為公差的等差數列
1
an
=
1
p
+(n-1)×1=n-1+
1
p
an=
1
n-1+
1
p

∵0<P<1∴
1
p
-1>0

an
n+1
=
1
(n+1)(n-1+
1
p
)
1
n(n+1)
=
1
n
-
1
n+1

a1
2
+
a2
3
+…+ 
an
n+1
 <
1-
1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1
=1-
1
n+1
=
n
n+1
<1
即證
點評:本題主要考查了利用構造等差數列求解通項公式、裂項求和是證明(2)的關鍵,解題的難點在于發(fā)現通項中
an
n+1
=
1
(n+1)(n-1+
1
p
)
1
n(n+1)
=
1
n
-
1
n+1
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知正項數列{an}滿足:a1=3,(2n-1)an+2=(2n+1)an-1+8n2(n>1,n∈N*
(1)求證:數列{
an
2n+1
}
為等差數列,并求數列{an}的通項an
(2)設bn=
1
an
,求數列{bn}的前n項和為Sn,并求Sn的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

定義:稱
n
a1+a2+…+an
為n個正數a1,a2,…,an的“均倒數”,已知正項數列{an}的前n項的“均倒數”為
1
2n
,則
lim
n→∞
nan
sn
( 。
A、0
B、1
C、2
D、
1
2

查看答案和解析>>

科目:高中數學 來源: 題型:

已知正項數列an中,a1=2,點(
an
,an+1)
在函數y=x2+1的圖象上,數列bn中,點(bn,Tn)在直線y=-
1
2
x+3
上,其中Tn是數列bn的前項和.(n∈N+).
(1)求數列an的通項公式;
(2)求數列bn的前n項和Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

已知正項數列{an}滿足a1=1,an+1=an2+2an(n∈N+),令bn=log2(an+1).
(1)求證:數列{bn}為等比數列;
(2)記Tn為數列{
1
log2bn+1log2bn+2
}
的前n項和,是否存在實數a,使得不等式Tn<log0.5(a2-
1
2
a)
對?n∈N+恒成立?若存在,求出實數a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知正項數列{an},Sn=
1
8
(an+2)2

(1)求證:{an}是等差數列;
(2)若bn=
1
2
an-30
,求數列{bn}的前n項和.

查看答案和解析>>

同步練習冊答案