A. | e-4 | B. | e-1 | C. | 1 | D. | e${\;}^{\frac{7}{2}}$ |
分析 畫出滿足條件的平面區(qū)域,求出z的最大值,從而求出t的最大值即可.
解答 解:畫出滿足條件的平面區(qū)域,如圖示:
,
設(shè)z=4x+y,
由$\left\{\begin{array}{l}{x-y+1=0}\\{x+y-2=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=\frac{1}{2}}\\{y=\frac{3}{2}}\end{array}\right.$,
當(dāng)直線y=-4x+z過A($\frac{1}{2}$,$\frac{3}{2}$),z最大,
故z的最大值是$\frac{7}{2}$,
∴${∫}_{1}^{t}$$\frac{1}{x}$dx=lnt≤$\frac{7}{2}$,
故t≤${e}^{\frac{7}{2}}$.
故選:D.
點評 本題考查了簡單的線性規(guī)劃問題,考查數(shù)形結(jié)合思想,是一道中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | F=0,D≠0,E≠0 | B. | E=F=0,D≠0 | C. | D=F=0,E≠0 | D. | D=E=0,F(xiàn)≠0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=-$\frac{1}{x}$ | B. | y=-x2+2x+1 | C. | y=$\frac{x}{1-x}$+2 | D. | y=1+x2. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 如果命題“非p”與命題“p∨q”都是真命題,那么命題q一定是真命題 | |
B. | 命題“若a=0,則ab=0”的否命題是:“若a≠0,則ab≠0” | |
C. | 若命題p:?x0∈R,x02+2x0-3<0,則非p:?x∈R,x2+2x-3≥0 | |
D. | “a=-2”是“直線l1:ax+2y-1=0與直線l2:x+(a+1)y+4=0平行”的充要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com