設O為坐標原點,第一象限內(nèi)的點M(x,y)的坐標滿足約束條件
2x-y-6≤0
x-y+2≥0
,
ON
=(a,b) (a>0,b>0)
,若
OM
ON
的最大值為40,
5
a
+
1
b
的最小值為(  )
分析:作出不等式對應的平面區(qū)域,利用z的幾何意義以及基本不等式的應用進行求解.
解答:解:∵
OM
ON
=ax+by,
∴設z=ax+by,則z的最大值為40.
作出不等式組的對應的平面區(qū)域如圖:(陰影部分)
由z=ax+by,得y=-
a
b
x+
z
b
,
由圖象可知當直線y=-
a
b
x+
z
b
,經(jīng)過點A時,直線y=-
a
b
x+
z
b
的截距最大,
此時z最大(∵b>0),
2x-y-6=0
x-y+2=0
,解得
x=8
y=10

即A(8,10),
代入z=ax+by,得40=8a+10b,
a
5
+
b
4
=1
,
5
a
+
1
b
=(
5
a
+
1
b
)(
a
5
+
b
4
)=1+
1
4
+
5b
4a
+
a
5b
5
4
+2
5b
4a
a
5b
=
5
4
+2×
1
2
=
9
4

當且僅當
5b
4a
=
a
5b
,即4a2=25b2,2a=5b時取等號,
5
a
+
1
b
的最小值為
9
4

故選:B.
點評:本題主要考查線性規(guī)劃和基本不等式的基本應用,利用z的幾何意義是解決線性規(guī)劃的關鍵,注意利用數(shù)形結(jié)合來解決.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知點A(1,,0),B(0,,1),C(2sinθ,cosθ).
(Ⅰ)若|
AC
|=|
BC
|
,求tanθ的值;
(Ⅱ)設O為坐標原點,點C在第一象限,求函數(shù)y=(
OA
+2
OB
)•
OC
的單調(diào)遞增區(qū)間與值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設O為坐標原點,點P的坐標為(x-2,x-y).
(1)在一個盒子中,放有標號為1,2,3的三張卡片,現(xiàn)隨機從此盒中先后連續(xù)抽出兩張卡片,記兩次抽取卡片的標號分別為x、y,求點P在第一象限的概率;
(2)若利用計算機隨機在區(qū)間[0,3]上先后取兩個數(shù)分別記為x、y,求點P在第一象限的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)的右焦點為F,過點F作與x軸垂直的直線l交兩漸近線于A、B兩點,且與雙曲線在第一象限的交點為P,設O為坐標原點,若
OP
OA
OB
(λ,μ∈R),λμ=
3
16
,則該雙曲線的離心率為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•天津模擬)設O為坐標原點,點P的坐標(x-2,x-y)
(I)在一個盒子中,放有標號為1,2,3的三張卡片,現(xiàn)從此盒中有放回地先后抽到兩張卡片的標號分別記為x,y,求|OP|的最大值,并求事件“|OP|取到最大值”的概率;
(II)若利用計算機隨機在[0,3]上先后取兩個數(shù)分別記為x,y,求P點在第一象限的概率.

查看答案和解析>>

同步練習冊答案