12.設(shè)函數(shù)f(x)=x3-12x+b,則下列結(jié)論正確的是(  )
A.函數(shù)f(x)在(-∞,-1)上單調(diào)遞增
B.函數(shù)f(x)在(-∞,-1)上單調(diào)遞減
C.若b=-6,則函數(shù)f(x)的圖象在點(diǎn)(-2,f(-2))處的切線方程為y=10
D.若b=0,則函數(shù)f(x)的圖象與直線y=10只有一個公共點(diǎn)

分析 求出函數(shù)的導(dǎo)數(shù),求出極值點(diǎn),判斷A,B的正誤;求出切線方程判斷C的正誤;利用函數(shù)的極值判斷D的正誤;

解答 解:函數(shù)f(x)=x3-12x+b,可得f′(x)=3x2-12,令3x2-12=0,可得x=-2,或x=2.
函數(shù)f(x)在(-∞,-2)上單調(diào)遞增,所以A、B都不正確;b=-6,f′(-2)=0.f(-2)=10,
則函數(shù)f(x)的圖象在點(diǎn)(-2,f(-2))處的切線方程為y=10,正確;
若b=0,則函數(shù)f(x)的極大值為:16,圖象與直線y=10只有一個公共點(diǎn)錯誤;
故選:C.

點(diǎn)評 本題考查函數(shù)的單調(diào)性以及函數(shù)的極值,考查轉(zhuǎn)化思想以及計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.雙曲線x2-$\frac{{y}^{2}}{3}$=1的兩條漸近線夾角是( 。
A.30°B.60°C.90°D.120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=ex(x+a)-x2+bx,曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程為y=x-2.
(1)求a,b的值;
(2)求f(x)的單調(diào)區(qū)間及極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.一邊長為2的正三角形ABC的兩個頂點(diǎn)A、B在平面α上,另一個頂點(diǎn)C在平面α上的射影為C',則三棱錐A-BC'C的體積的最大值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.直線l過點(diǎn)P(-2,1).
(1)若直線l與直線x+2y=1平行,求直線l的方程;
(2)若直線l與直線x+2y=1垂直,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=$\frac{mx{\;}^{2}+2}{3x+n}$是奇函數(shù),且f(2)=$\frac{5}{3}$.
(1)求實(shí)數(shù)m和n的值;
(2)判斷函數(shù)f(x)在(-∞,0)上的單調(diào)性,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.圓C的圓心在直線y=3x上,且圓C與x軸相切,若圓C截直線y=x得弦長為2$\sqrt{7}$,求圓C的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)f(x)=5${\;}^{\frac{1}{x-1}}$+$\sqrt{2-x}$的定義域?yàn)椋ā 。?table class="qanwser">A.{x|1<x≤2}B.{x|1≤x≤2}C.{x|x≤2且x≠1}D.{x|x≥0且x≠1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.學(xué)校對高中三個年級的學(xué)生進(jìn)行調(diào)查,其中高一有100名學(xué)生,高二有200名學(xué)生,高三有300名學(xué)生,現(xiàn)學(xué)生處欲用分層抽樣的方法抽取30名學(xué)生進(jìn)行問卷調(diào)查,則下列判斷正確的是( 。
A.高一學(xué)生被抽到的概率最大B.高三學(xué)生被抽到的概率最大
C.高三學(xué)生被抽到的概率最小D.每名學(xué)生被抽到的概率相等

查看答案和解析>>

同步練習(xí)冊答案