16π [-2,4]
分析:A:先利用直角坐標(biāo)與極坐標(biāo)間的關(guān)系,即利用ρcosθ=x,ρsinθ=y,ρ
2=x
2+y
2,將曲線的極坐標(biāo)方程化成直角坐標(biāo)方程,再利用直角坐標(biāo)中點(diǎn)的坐標(biāo)、直線的方程求解成的圖形的面積即可.
B:連接輔助線,根據(jù)圓周角是30°,得到對(duì)應(yīng)的圓心角是60°,根據(jù)圓的半徑相等,得到三角形是一個(gè)等邊三角形,求出半徑的長(zhǎng)度,根據(jù)圓的面積公式,得到結(jié)果.
解答:
解:A:曲線ρcosθ+ρsinθ=1的直角坐標(biāo)方程分別為:
x+y-1=0.它與x軸的交點(diǎn)為B(1,0).
曲線θ=
的直角坐標(biāo)方程分別為:
x-y=0.
它們的交點(diǎn)坐標(biāo)為A(
,
),
∴由三條曲線
圍成的圖形如圖所示.
∴S=
OB×h=
×1×
=
.
故答案為:
.
B:解:連接OA,OB,
∵∠ACB=30°,
∴∠AoB=60°,
∴△AOB是一個(gè)等邊三角形,
∴OA=AB=4,
∴⊙O的面積是16π
故答案為16π.
點(diǎn)評(píng):A:本小題考查簡(jiǎn)單曲線的極坐標(biāo)方程、點(diǎn)的極坐標(biāo)和直角坐標(biāo)的互化,能在極坐標(biāo)系中用極坐標(biāo)刻畫(huà)點(diǎn)的位置,體會(huì)在極坐標(biāo)系和平面直角坐標(biāo)系中刻畫(huà)點(diǎn)的位置的區(qū)別,能進(jìn)行極坐標(biāo)和直角坐標(biāo)的互化.
B:本小題考查圓周角的性質(zhì),考查等邊三角形,考查圓的面積,是一個(gè)等邊三角形,在解題時(shí)主要做法是構(gòu)造等邊三角形.