試求過(guò)點(diǎn)P(3,5)且與曲線(xiàn)y=x2相切的直線(xiàn)方程.
分析:欲求出切線(xiàn)方程,只須求出其斜率即可,故先利用導(dǎo)數(shù)求出在切點(diǎn)(x0,x02)處的導(dǎo)函數(shù)值,再結(jié)合導(dǎo)數(shù)的幾何意義即可求出切線(xiàn)的斜率.最后結(jié)合切線(xiàn)過(guò)點(diǎn)P(3,5)即可求出切點(diǎn)坐標(biāo),從而問(wèn)題解決.
解答:解:y′=2x,過(guò)其上一點(diǎn)(x0,x02)的切線(xiàn)方程為
y-x02=2x0(x-x0),
∵所求切線(xiàn)過(guò)P(3,5),
∴5-x02=2x0(3-x0),解之得x0=1或x0=5.
從而切點(diǎn)A的坐標(biāo)為(1,1)或(5,25).
當(dāng)切點(diǎn)為(1,1)時(shí),切線(xiàn)斜率k1=2x0=2;
當(dāng)切點(diǎn)為(5,25)時(shí),切線(xiàn)斜率k2=2x0=10.
∴所求的切線(xiàn)有兩條,方程分別為y-1=2(x-1)和y-25=10(x-5),
即y=2x-1和y=10x-25.
點(diǎn)評(píng):本小題主要考查導(dǎo)數(shù)的概念、導(dǎo)數(shù)的幾何意義和利用導(dǎo)數(shù)研究曲線(xiàn)上某點(diǎn)切線(xiàn)方程的能力,考查運(yùn)算求解能力.屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

試求過(guò)點(diǎn)P(3,5)且與曲線(xiàn)y=x2相切的直線(xiàn)方程是
y=2x-1和y=10x-25
y=2x-1和y=10x-25

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

試求過(guò)點(diǎn)P(3,5)且與曲線(xiàn)y=x2相切的直線(xiàn)方程是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

試求過(guò)點(diǎn)P(3,5)且與曲線(xiàn)y=x2相切的直線(xiàn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年廣東省深圳高級(jí)中學(xué)高二(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

試求過(guò)點(diǎn)P(3,5)且與曲線(xiàn)y=x2相切的直線(xiàn)方程是   

查看答案和解析>>

同步練習(xí)冊(cè)答案