如果數(shù)列的前n項和Sn=a1+a2+a3+…+an滿足條件log2Sn=n,那么{an}( )
A.是公比為2的等比數(shù)列
B.是公比為的等比數(shù)列
C.是公差為2的等差數(shù)列
D.既不是等差數(shù)列,也不是等比數(shù)列
【答案】分析:由題意可得Sn=2n,由此可得通項公式,由此可判斷是不是等差數(shù)列或等比數(shù)列.
解答:解:由題意可得:Sn=2n,
故當(dāng)n=1時,a1=S1=2,
當(dāng)n≥2時,an=Sn-Sn-1=2n-2n-1=2n-1
當(dāng)n=1時,上式不適合,故{an}不是等比數(shù)列;
又an+1-an=2n-2n-1=2n-1,不是常數(shù),故{an}不是等差數(shù)列.
故選D
點(diǎn)評:本題考查等差數(shù)列和等比數(shù)列的定義,涉及由和求通項,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知由正數(shù)組成的兩個數(shù)列{an},{bn},如果an,an+1是關(guān)于x的方程x2-2bn2x+anbnbn+1=0的兩根.
(1)求證:{bn}為等差數(shù)列;
(2)已知a1=2,a2=6,分別求數(shù)列{an},{bn}的通項公式;
(3)求數(shù){
bn2n
}的前n項和S

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)的定義域為R,數(shù)列{an}滿足an=f(an-1)(n∈N*且n≥2).
(Ⅰ)若數(shù)列{an}是等差數(shù)列,a1≠a2,且f(an)-f(an-1)=k(an-an-1)(k為非零常數(shù),n∈N*且n≥2),求k的值;
(Ⅱ)若f(x)=kx(k>1),a1=2,bn=lnan(n∈N*),數(shù)列{bn}的前n項和為Sn,對于給定的正整數(shù)m,如果
S(m+1)nSmn
的值與n無關(guān),求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若數(shù)列{an}的前n項和為Sn,且滿足等式an+2Sn=3.
(1)能否在數(shù)列中找到按原來順序成等差數(shù)列的任意三項,說明理由;
(2)能否從數(shù)列中依次抽取一個無限多項的等比數(shù)列,且使它的所有項和S滿足
9
160
<S<
1
13
,如果這樣的數(shù)列存在,這樣的等比數(shù)列有多少個?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•湛江二模)有一個翻硬幣游戲,開始時硬幣正面朝上,然后擲骰子根據(jù)下列①、②、③的規(guī)則翻動硬幣:①骰子出現(xiàn)1點(diǎn)時,不翻動硬幣;②出現(xiàn)2,3,4,5點(diǎn)時,翻動一下硬幣,使另一面朝上;③出現(xiàn)6點(diǎn)時,如果硬幣正面朝上,則不翻動硬幣;否則,翻動硬幣,使正面朝上.按以上規(guī)則,在骰子擲了n次后,硬幣仍然正面朝上的概率記為Pn
(Ⅰ)求證:?n∈N*,點(diǎn)(Pn,Pn+1)恒在過定點(diǎn)(
5
9
5
9
),斜率為-
1
2
的直線上;
(Ⅱ)求數(shù)列{Pn}的通項公式Pn;
(Ⅲ)用記號Sn→m表示數(shù)列{Pn-
5
9
}從第n項到第m項之和,那么對于任意給定的正整數(shù)k,求數(shù)列S1→k,Sk+1→2k,…,S(n-1)k+1→nk,…的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知由正數(shù)組成的兩個數(shù)列{an},{bn},如果an,an+1是關(guān)于x的方程x2-2bn2x+anbnbn+1=0的兩根.
(1)求證:{bn}為等差數(shù)列;
(2)已知a1=2,a2=6,分別求數(shù)列{an},{bn}的通項公式;
(3)求數(shù){
bn
2n
}的前n項和S

查看答案和解析>>

同步練習(xí)冊答案