正方體ABCD-A1B1C1D1中,P、Q、R分別是AB、AD、B1C1的中點(diǎn),那么正方體的過(guò)P、Q、R的截面圖形是

[  ]

A.三角形

B.四邊形

C.五邊形

D.六邊形

答案:D
解析:

  解析:如圖,作RG∥PQ交C1D1于G,連結(jié)QP并延長(zhǎng)與CB的延長(zhǎng)線交于M,連結(jié)MR交BB1于E,連結(jié)PE、RE為截面的部分外形.

  同理連PQ并延長(zhǎng)交CD的延長(zhǎng)線于N,

  連NG交DD1于F,連QF,F(xiàn)G.

  ∴截面PQFGRE為六邊形.


提示:

本題主要考查利用平面基本性質(zhì)公理作截面及空間想象能力和作圖能力,屬中檔題.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中.
(1)求:點(diǎn)A到平面BD1的距離;
(2)求點(diǎn)A1到平面AB1D1的距離;
(3)求平面AB1D1與平面BC1D的距離;
(4)求直線AB到CDA1B1的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

正方體ABCD-A1B1C1D1的棱長(zhǎng)為a.
求:
(1)二面角A-BD-A1的正切值;
(2)AA1與平面A1BD所成的角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•河?xùn)|區(qū)一模)已知:正方體ABCD-A1B1C1D1的棱長(zhǎng)為1.
(Ⅰ)求棱AA1與平面A1BD所成的角;
(Ⅱ)求二面角B-A1D-B1的大小;
(Ⅲ)求四面體A1-BB1D的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若棱長(zhǎng)為1的正方體ABCD-A1B1C1D1 的八個(gè)頂點(diǎn)都在球O的表面上,則A,A1兩點(diǎn)之間的球面距離為
3
2
arccos
1
3
3
2
arccos
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆云南省高二下學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題

正方體ABCD-A1 B1 C1 D1中,BB1與平面ACD1所成角的余弦值為    (        )

 (A)                    (B)             (C)           (D)

 

查看答案和解析>>

同步練習(xí)冊(cè)答案