已知f(x)=lg(-x2+8x-7)在(m,m+1)上是增函數(shù),則m的取值范圍是 .
【答案】
分析:先求函數(shù)的定義域,結(jié)合復(fù)合函數(shù)的單調(diào)性及對數(shù)函數(shù)的單調(diào)性可知t=-x
2+8x-7在(m,m+1)上是增函數(shù),而該函數(shù)的增區(qū)間是(1,4],從而可得(m,m+1)⊆(1,4]
解答:解:函數(shù)的定義域(1,7)
∵f(x)=lg(-x
2+8x-7)在(m,m+1)上是增函數(shù)
由復(fù)合函數(shù)的單調(diào)性可知t=-x
2+8x-7在(m,m+1)上單調(diào)遞增且t>0
函數(shù)的增區(qū)間(1,4],減區(qū)間[4,7)
1≤m≤3
故答案為:1≤m≤3
點評:本題考查了復(fù)合函數(shù)的單調(diào)性:對數(shù)函數(shù)與二次函數(shù)的單調(diào)性,關(guān)鍵是要注意對數(shù)的真數(shù)大于零的要求,即函數(shù)定義域的求解,漏掉這一點,就會把函數(shù)的單調(diào)區(qū)間弄錯.