【題目】在正方體ABCD-A1B1C1D中,M為DD1的中點,O為AC的中點,AB=2.
(I)求證:BD1∥平面ACM;
(Ⅱ)求證:B1O⊥平面ACM;
(Ⅲ)求三棱錐O-AB1M的體積.
【答案】(Ⅰ)(Ⅱ)詳見解析;(Ⅲ).
【解析】
試題分析:(Ⅰ)要證明線面平行,可先證明線線平行,連接BD,MO,根據三角形中位線的平行關系可證明;(Ⅱ)要證明線面垂直,根據判定定理,可證明線與平面內的兩條相交直線垂直,即證明和;(Ⅲ)將四面體的體積轉化為以三角形當底面,AO是四面體的高的幾何體的體積,這樣易計算四面體的體積.
試題解析:(I)證明:
連結BD,設BD與AC的交點為O,
∵AC,BD為正方形的對角線,故O為BD中點;
連結MO,
∵O,M分別為DB,DD1的中點,
∴OM∥BD1,…(2分)
∵OM平面ACM,BD1平面ACM…(3分)
∴BD1∥平面ACM. …(4分)
(II)∵AC⊥BD,DD1⊥平面ABCD,且AC平面ABCD,
∴AC⊥DD1;且BD∩DD1=D,∴AC⊥平面BDD1B1…(6分)
OB1平面BDD1B1,∴B1O⊥AC,…(7分)
連結B1M,在△B1MO中
∴
∴B1O⊥OM…(10分)
又OM∩AC=O,∴B1O⊥平面AMC; …(11分)
.(II) V=
科目:高中數學 來源: 題型:
【題目】某學校隨機抽取部分新生調查其上學路上所需時間(單位:分鐘),并將所得數據繪制成頻率分布直方圖(如圖),其中,上學路上所需時間的范圍是,樣本數據分組為,,,,.
(1)求直方圖中的值;
(2)如果上學路上所需時間不少于60分鐘的學生可申請在學校住宿,請估計學校1000名新生中有多少名學生可以申請住宿;
(3)現有6名上學路上時間小于分鐘的新生,其中2人上學路上時間小于分鐘. 從這6人中任選2人,設這2人中上學路上時間小于分鐘人數為,求的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】通過研究學生的學習行為,心理學家發(fā)現,學生接受能力依賴于老師引入概念和描述問題所用的時間,講座開始時,學生的興趣激增,中間有一段不太長的時間,學生的興趣保持理想的狀態(tài),隨后學生的注意力開始分散,分析結果和實驗表明,用表示學生掌握和接受概念的能力(的值越大,表示接受能力越強),表示提出和講授概念的時間(單位:分),可以有以下公式: .
(1)開講多少分鐘后,學生的接受能力最強?能維持多少分鐘?
(2)開講5分鐘與開講20分鐘比較,學生的接受能力何時強一些?
(3)一個數學難題,需要55的接受能力以及13分鐘的時間,老師能否及時在學生一直達到所需接受能力的狀態(tài)下講授完這個難題?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,側面是正三角形,且與底面垂直,底面是邊長為2的菱形, 是的中點,過三點的平面交于, 為的中點,求證:
(1)平面;
(2)平面;
(3)平面平面.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com