已知,且.

(1)求;

(2)求.

 

【答案】

(1);(2).

【解析】

試題分析:

(1) 本小題首先根據(jù)同角三角函數(shù)基本關(guān)系式,結(jié)合角的范圍可求得,然后利用二倍角正切公式求;

(2) 本小題主要是根據(jù)角的變換,轉(zhuǎn)化為和差角求解,首先由,得,又因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014031004371200583033/SYS201403100437336777304633_DA.files/image009.png">,所以,最后代入化簡即可.

試題解析:

(1)由,

,

于是……6分

(2)由,得

又∵,

得:

所以……13分

考點(diǎn):1.同角三角函數(shù)基本關(guān)系式;2.和差角公式

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(08年長郡中學(xué)一模理)如圖,設(shè)是橢圓的左焦點(diǎn),直線為對(duì)應(yīng)的準(zhǔn)線,直線軸交于點(diǎn),為橢圓的長軸,已知,且

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)求證:對(duì)于任意的割線,恒有;

(3)求三角形△ABF面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分12分)已知,且。

(1)求的值;(2)當(dāng)時(shí),求函數(shù)的值域。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省紹興一中分校高三(上)10月月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知,且
(1)求實(shí)數(shù)k的值;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間及最大值,并指出取得最大值時(shí)的x值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年山東省棗莊市高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

已知,且
(1)求α的值;
(2)令,求f(1)+f(2)+f(3)+…+f(2012)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年安徽省宿州市泗縣一中高三數(shù)學(xué)考前最后一卷(理科)(解析版) 題型:解答題

在△ABC中,角A,B,C所對(duì)的邊分別是a,b,c.已知
(1)求角C的大。
(2)設(shè)f(x)=cos(ωx-C)-cos(ωx+C),(ω>0)且f(x)的最小正周期是π,求f(x)在上的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案