函數(shù)y=lg x+lg(x-1)的定義域為A,y=lg(x2-x)的定義域為B,則A、B的關(guān)系是    
【答案】分析:利用對數(shù)函數(shù)的真數(shù)大于0底數(shù)大于0且不等于1列出不等式組求出集合A,B;
利用集合間包含關(guān)系的定義判斷出A是B的子集.
解答:解:由已知得,
∴A={x|x>1},
由x2-x>0
得x>1或x<0,
∴B={x|x>1或x<0},
∴A⊆B.
故答案為:A⊆B
點評:本題考查對數(shù)函數(shù)需要滿足:真數(shù)大于0底數(shù)大于0且不等于1;考查集合間的包含關(guān)系.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

下列說法正確的題號為
 

①集合A={x|x2-3x-10≤0},B={x|a+1≤x≤2a-1},若B⊆A,則-3≤a≤3
②函數(shù)y=f(x)與直線x=l的交點個數(shù)為0或l
③函數(shù)y=f(2-x)與函數(shù)y=f(x-2)的圖象關(guān)于直線x=2對稱
a∈(
14
,+∞)
時,函數(shù)y=lg(x2+x+a)的值域為R;
⑤與函數(shù)關(guān)于點(1,-1)對稱的函數(shù)為y=-f(2-x).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列說法正確的為
①③④
①③④

①函數(shù)y=f(x)與直線x=l的交點個數(shù)為0或l;
②a∈(
1
4
,+∞)時,函數(shù)y=lg(x2+x+a)的值域為R;
③函數(shù)y=f(2-x)與函數(shù)y=f(x-2)的圖象關(guān)于直線x=2對稱;
④若函數(shù)f(x)=ax,則?x1,?x2∈R,都有f(
x1+x2
2
)<
f(x1)+f(x2
2

⑤若函數(shù)f(x)=log
2
x
,則?x1,x2∈(0,+∞),都有
f(x1)-f(x2)
x1-x2
<0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列說法正確的為
①③④⑤
①③④⑤

①函數(shù)y=f(x)與直線x=1的交點個數(shù)為0或l;
②集合A={x|x2-3x-10≤0},B={x|a+1≤x≤2a-1},若B⊆A,則-3≤a≤3;
③函數(shù)y=f(2-x)與函數(shù)y=f(x-2)的圖象關(guān)于直線x=2對稱;
④函數(shù)y=lg(x2+x+a)的值域為R 的充要條件是:a∈(-∞,
14
]
;
⑤與函數(shù)y=f(x)-2關(guān)于點(1,-1)對稱的函數(shù)為y=-f(2-x).

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年安徽省淮南四中高三(上)第二次月考數(shù)學試卷(文科)(解析版) 題型:填空題

下列說法正確的為   
①函數(shù)y=f(x)與直線x=l的交點個數(shù)為0或l;
②a∈(,+∞)時,函數(shù)y=lg(x2+x+a)的值域為R;
③函數(shù)y=f(2-x)與函數(shù)y=f(x-2)的圖象關(guān)于直線x=2對稱;
④若函數(shù)f(x)=ax,則?x1,?x2∈R,都有f()<
⑤若函數(shù),則?x1,x2∈(0,+∞),都有

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年湖北省黃岡中學高三(上)摸底數(shù)學試卷(理科)(解析版) 題型:填空題

下列說法正確的題號為   
①集合A={x|x2-3x-10≤0},B={x|a+1≤x≤2a-1},若B⊆A,則-3≤a≤3
②函數(shù)y=f(x)與直線x=l的交點個數(shù)為0或l
③函數(shù)y=f(2-x)與函數(shù)y=f(x-2)的圖象關(guān)于直線x=2對稱
時,函數(shù)y=lg(x2+x+a)的值域為R;
⑤與函數(shù)關(guān)于點(1,-1)對稱的函數(shù)為y=-f(2-x).

查看答案和解析>>

同步練習冊答案