如圖,四棱錐P ABCD中,底面ABCD為平行四邊形,∠ABC=60°,PA⊥平面ABCD,E為PD的中點.
(Ⅰ)證明:PB∥平面AEC;
(Ⅱ)設(shè)AD=2,PA=AB=1,求點D到平面AEC的距離.
考點:點、線、面間的距離計算,直線與平面平行的判定
專題:空間位置關(guān)系與距離
分析:(Ⅰ)首先利用中位線定理得到線線平行,進一步轉(zhuǎn)化為線面平行.
(Ⅱ)利用余弦定理求出相關(guān)的線段的長為求錐體的體積打下基礎(chǔ),利用不同的角度計算錐體的體積,進一步求出點到直線的距離.
解答: 證明:(Ⅰ)連結(jié)BD交AC于點O,底面ABCD為平行四邊形,
可得:O是BD的中點,E為PD的中點.
所以:PB∥OE
PB?平面AEC,OE?平面AEC
所以:PB∥平面AEC
(Ⅱ)由AD=2,PA=AB=1,∠ABC=60°,
利用余弦定理得:AC2=AB2+BC2-2AB•BCcos∠ABC
解得:AC=
3

因為:PA⊥平面ABCD
解得:PB=
2

利用中位線得:OE=
2
2

設(shè):點D到平面AEC的距離h,
根據(jù)VE-ACD=VD-ACE
所以:
1
2
×
1
3
×
3
2
=
1
3
×
6
4
h

解得:h=
2
2
點評:本題考查的知識要點:線面平行的判定定理,余弦定理得應(yīng)用.點到面之間的距離,錐體的體積公式的應(yīng)用.屬于基礎(chǔ)題型.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知:△ABC中,a=
3
,b=3,∠B=60°,則∠A=(  )
A、
π
6
B、
π
3
C、
π
6
6
D、
π
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示的曲線是y=Asin(ωx+φ)(A>0,ω>0)的圖象的一部分,求這個函數(shù)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知動直線x=α(α∈R)與x軸交于A點,與函數(shù)f(x)=sinx和g(x)=cos(x+
π
6
)的圖象分別交于M、N兩點,設(shè)h(α)=|AM|2+|AN|2
(Ⅰ)求函數(shù)h(α)的最小正周期及值域;
(Ⅱ)求函數(shù)h(α)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=
2cosx
sinx-cosx
的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標系xOy中,橢圓Γ:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
3
2
,上頂點(0,b)在直線x+y-1=0上.
(Ⅰ)求橢圓Γ的方程;
(Ⅱ)過原點的直線與橢圓Γ交于A,B兩點(A,B不是橢圓Γ的頂點).點C在橢圓Γ上,且AC⊥AB,直線BC與x軸、y軸分別交于P,Q兩點.
(i)設(shè)直線BC,AP的斜率分別為k1,k2,問是否存在實數(shù)t,使得k1=tk2?若存在,求出t的值;若不存在,請說明理由;
(ii)求△OPQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在遞增的等比數(shù)列{an}中,a1+an=34,a2an-1=64,且前n項和Sn=42,則項數(shù)n等于(  )
A、6B、5C、4D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在三棱錐P-ABC中,不能推出平面PAC⊥平面PBC的條件是( 。
A、BC⊥PA,BC⊥PC
B、AC⊥PB,AC⊥PC
C、AC⊥BC,PA⊥PB
D、平面PAC⊥平面ABC,BC⊥AC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:kx-y+1+2k=0(k∈R).
(1)求證:直線l過定點;
(2)若直線l不經(jīng)過第四象限,求k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案