如圖,已知函數(shù)f(x)=Asin(ωx+φ)(A>0,|φ|<)圖像上一個(gè)最高點(diǎn)坐標(biāo)為(2,2),這個(gè)最高點(diǎn)到相鄰最低點(diǎn)的圖像與x軸交于點(diǎn)(5,0).

(1)求f(x)的解析式;
(2)是否存在正整數(shù)m,使得將函數(shù)f(x)的圖像向右平移m個(gè)單位后得到一個(gè)偶函數(shù)的圖像?若存在,求m的最小值;若不存在,請(qǐng)說明理由.

(1)f(x)=2sin,
(2)m的最小值為4.

解析試題分析:解:(1)由題意知A=2,=3,
∴T=12,∴ω=
∴f(x)=2sin,
∵圖像過(2,2),∴2=2sin,
∴sin=1,
+φ=,∴φ=,
∴f(x)=2sin.     6分
(2)假設(shè)存在m,則有
f(x-m)=2sin
=2cos
=2cos
∵f(x-m)為偶函數(shù),
m=kπ,k∈Z
∴m=6k-2,∴k=1時(shí)m=4.
∴存在m,m的最小值為4.     13分
考點(diǎn):三角函數(shù)的圖象與解析式
點(diǎn)評(píng):主要是考查了三角函數(shù)的解析式以及性質(zhì)的運(yùn)用,屬于中檔題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,,處的切線方程為
(Ⅰ)求的單調(diào)區(qū)間與極值;
(Ⅱ)求的解析式;
(III)當(dāng)時(shí),恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),且處的切線方程為.
(1)求的解析式;
(2)證明:當(dāng)時(shí),恒有;
(3)證明:若,,且,則.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè), 已知函數(shù) 
(Ⅰ) 證明在區(qū)間(-1,1)內(nèi)單調(diào)遞減, 在區(qū)間(1, + ∞)內(nèi)單調(diào)遞增;
(Ⅱ) 設(shè)曲線在點(diǎn)處的切線相互平行, 且 證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(Ⅰ)若在實(shí)數(shù)集R上單調(diào)遞增,求的范圍;
(Ⅱ)是否存在實(shí)數(shù)使上單調(diào)遞減.若存在求出的范圍,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

己知函數(shù).
(I)求f(x)的極小值和極大值;
(II)當(dāng)曲線y = f(x)的切線的斜率為負(fù)數(shù)時(shí),求在x軸上截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)(e為自然對(duì)數(shù)的底數(shù)).
(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若對(duì)于任意,不等式恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

求曲線y=x2,直線y=x,y=3x圍成的圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=-x3x2-2x(a∈R).
(1)當(dāng)a=3時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若對(duì)于任意x∈[1,+∞)都有f′(x)<2(a-1)成立,求實(shí)數(shù)a的取值范圍;
(3)若過點(diǎn)可作函數(shù)y=f(x)圖象的三條不同切線,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案