如圖,D、E分別是正三棱柱ABC-A1B1C1的棱AA1、BB1的中點(diǎn),且棱AA1=8,AB=4.
(Ⅰ)求證:A1E∥平面BDC1;
(Ⅱ)在棱AA1上是否存在一點(diǎn)M,使二面角M-BC1-B1的大小為60°,若存在,求AM的長(zhǎng);若不存在,說(shuō)明理由.

【答案】分析:(Ⅰ)在線段BC1上取中點(diǎn)F,連接EF、DF,可得EF∥DA1,且EF=DA1,所以四邊形EFDA1是平行四邊形,所以A1E∥FD,再結(jié)合線面平行的判定定理可得線面平行.
(II)由題意可得:A1E⊥平面CBB1C1.過(guò)點(diǎn)E作EH⊥BC1與H,連接A1H,則∠A1HE為二面角A1-BC1-B1的平面角,再利用解三角形的有關(guān)知識(shí)得到此角大于60°,進(jìn)而得到結(jié)論.
解答:解:(Ⅰ)在線段BC1上取中點(diǎn)F,連接EF、DF,
所以EF∥DA1,且EF=DA1,
∴四邊形EFDA1是平行四邊形…2′
∴A1E∥FD,又A1E?平面BDC1,F(xiàn)D?平面BDC1,
∴A1E∥平面BDC1.…4′
(II)由A1E⊥B1C1,A1E⊥C1C,可得A1E⊥平面CBB1C1
過(guò)點(diǎn)E作EH⊥BC1與H,連接A1H,
則∠A1HE為二面角A1-BC1-B1的平面角,
在Rt△BB1C1中,由BB1=8,B1C1=4可得BC1邊上的高為,
所以EH=
又A1E=2,
所以tan∠A1HE=
所以∠A1HE>60°.
所以M在棱AA1上時(shí),二面角M-BC1-B1總大于60°.
故棱AA1上不存在使二面角M-BC1-B1的大小為60°的點(diǎn)M.…12′
點(diǎn)評(píng):本題考查用線面平行的判定定理證明線面平行,以及求二面角的平面角,而空間角解決的關(guān)鍵是做角,由圖形的結(jié)構(gòu)及題設(shè)條件正確作出平面角來(lái),是求角的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,D、E分別是正三棱柱ABC-A1B1C1的棱AA1、BB1的中點(diǎn),且棱AA1=8,AB=4.
(Ⅰ)求證:A1E∥平面BDC1;
(Ⅱ)在棱AA1上是否存在一點(diǎn)M,使二面角M-BC1-B1的大小為60°,若存在,求AM的長(zhǎng);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖:D、E分別是正三棱柱ABC-A1B1C1的棱AA1、B1C1的中點(diǎn),且棱AA1=8,AB=4,
(1)求證:A1E∥平面BDC1
(2)求BD與平面CC1B1B所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•孝感模擬)如圖:D、E分別是正三棱柱ABC-A1B1C1的棱AA1、B1C1的中點(diǎn),且棱AA1=8,AB=4,
(1)求證:A1E∥平面BDC1
(2)求二面角A1-BC1-B1的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,D、E分別是正三棱柱ABC-A1B1C1的棱AA1、BB1的中點(diǎn),且棱AA1=8,AB=4.
(Ⅰ)求證:A1E∥平面BDC1;
(Ⅱ)在棱AA1上是否存在一點(diǎn)M,使二面角M-BC1-B1的大小為60°,若存在,求AM的長(zhǎng);若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案