(14分)已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
。2)曲線在點(diǎn)和處的切線都與y軸垂直,若方程=0在區(qū)間[a,b]上有解,求實(shí)數(shù)t的取值范圍.解析:(1)由
得x<0或x>2t,
由
得0<x<2t
∴函數(shù)的單調(diào)遞增區(qū)間為[-,0],(2t,+)
單調(diào)遞減區(qū)間為(0,2t)…………………(6分)
(2)由曲線y=在點(diǎn)和處的
切線都與y軸垂直,知
又a<b ∴a=0 b=2t………………………………(8分)
若方程=0在區(qū)間[a,b]上有解,
即曲線在區(qū)間[0,2t]上與x軸相交
又在區(qū)間[0,2t]上單調(diào)
∴ 即…………………………………(11分)
又t>0
解得
∴實(shí)數(shù)t得取值范圍是()………………………(14分)年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年山東省青島市高三3月統(tǒng)一質(zhì)量檢測(cè)考試(第二套)理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù).
(1)求的最小值;
(2)當(dāng)函數(shù)自變量的取值區(qū)間與對(duì)應(yīng)函數(shù)值的取值區(qū)間相同時(shí),這樣的區(qū)間稱為函數(shù)的保值區(qū)間.設(shè),試問(wèn)函數(shù)在上是否存在保值區(qū)間?若存在,請(qǐng)求出一個(gè)保值區(qū)間;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆湖南省高一12月月考數(shù)學(xué) 題型:解答題
(本題滿分14分)定義在D上的函數(shù),如果滿足;對(duì)任意,存在常數(shù),都有成立,則稱是D上的有界函數(shù),其中M稱為函數(shù)的上界。
已知函數(shù),
(1)當(dāng)時(shí),求函數(shù)在上的值域,并判斷函數(shù)在上是否為有界函數(shù),請(qǐng)說(shuō)明理由;
(2)若函數(shù)在上是以3為上界函數(shù)值,求實(shí)數(shù)的取值范圍;
(3)若,求函數(shù)在上的上界T的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江蘇省徐州市銅山縣棠張中學(xué)高三(上)周練數(shù)學(xué)試卷(理科)(11.3)(解析版) 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com