【題目】某地煤氣公司規(guī)定,居民每個(gè)月使用的煤氣費(fèi)由基本月租費(fèi)、保險(xiǎn)費(fèi)和超額費(fèi)組成.每個(gè)月的保險(xiǎn)費(fèi)為3元,當(dāng)每個(gè)月使用的煤氣量不超過am3時(shí),只繳納基本月租費(fèi)c元;如果超過這個(gè)使用量,超出的部分按b元/m3計(jì)費(fèi).
(1)請寫出每個(gè)月的煤氣費(fèi)y(元)關(guān)于該月使用的煤氣量x(m3)的函數(shù)解析式;
(2)如果某個(gè)居民7~9月份使用煤氣與收費(fèi)情況如下表,請求出a,b,c,并畫出函數(shù)圖象;
月份 | 煤氣使用量/m3 | 煤氣費(fèi)/元 |
7 | 4 | 4 |
8 | 10 | 10 |
9 | 16 | 19 |
其中,僅7月份煤氣使用量未超過am3.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知斜三棱柱ABC-A1B1C1的側(cè)面A1ACC1與底面ABC垂直,∠ABC=900,BC=2,AC=,且AA1⊥A1C,AA1=A1C.
(Ⅰ)求側(cè)棱A1A與底面ABC所成角的大小;
(Ⅱ)求側(cè)面A1ABB1與底面ABC所成二面角的大小。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知橢圓:的離心率,,分別為左、右焦點(diǎn),過的直線交橢圓于,兩點(diǎn),且的周長為8.
(1)求橢圓的方程;
(2)設(shè)過點(diǎn)的直線交橢圓于不同兩點(diǎn),.為橢圓上一點(diǎn),且滿足(為坐標(biāo)原點(diǎn)),當(dāng)時(shí),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形所在平面與半圓弧所在平面垂直,是上異于,的點(diǎn).
(1)證明:平面平面;
(2)在線段上是否存在點(diǎn),使得平面?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l:4x+3y+10=0,半徑為2的圓C與l相切,圓心C在x軸上且在直線l的右上方.
(1)求圓C的方程;
(2)過點(diǎn)M(1,0)的直線與圓C交于A,B兩點(diǎn)(A在x軸上方),問在x軸正半軸上是否存在定點(diǎn)N,使得x軸平分∠ANB?若存在,請求出點(diǎn)N的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),函數(shù),有無數(shù)個(gè)零點(diǎn),則實(shí)數(shù)的最大值為___________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在正三棱柱ABCA1B1C1中,AB=2,AA1=2,由頂點(diǎn)B沿棱柱側(cè)面(經(jīng)過棱AA1)到達(dá)頂點(diǎn)C1,與AA1的交點(diǎn)記為M.求:
(1)三棱柱側(cè)面展開圖的對角線長;
(2)從B經(jīng)M到C1的最短路線長及此時(shí)的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com