求函數(shù)y=2x-3+
x2-12
的值域.
考點:函數(shù)的值域
專題:計算題,函數(shù)的性質及應用
分析:化簡(y-2x+3)2=x2-12,從而利用判別式法求函數(shù)的值域.
解答: 解:函數(shù)y=2x-3+
x2-12
的定義域為{x|x≥2
3
或x≤-2
3
};
y=2x-3+
x2-12
可化為
y-2x+3=
x2-12

即(y-2x+3)2=x2-12;
即3x2-4(y+3)x+12+(y+3)2=0;
故△=16(y+3)2-3×4(12+(y+3)2)≥0,
即y≥3或y≤-9;
故函數(shù)的值域為{y|y≥3或y≤-9}.
點評:本題考查了函數(shù)值域的求法.高中函數(shù)值域求法有:1、觀察法,2、配方法,3、反函數(shù)法,4、判別式法;5、換元法,6、數(shù)形結合法,7、不等式法,8、分離常數(shù)法,9、單調(diào)性法,10、利用導數(shù)求函數(shù)的值域,11、最值法,12、構造法,13、比例法.要根據(jù)題意選擇.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

解不等式:(a2+1)x+3<(a2+1)3x-1(a≠0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知長方體ABCD-A1B1C1D1的外接球半徑為4,則△AA1B,△ABD,△AA1D的面積之和的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在一次歌詠比賽中,七位裁判為一選手打出的分數(shù)如下:
90  89  90  95  93  94  93  
去掉一個最高分和一個最低分后,所剩數(shù)據(jù)的平均數(shù)和方差分別為( 。
A、92,2.8
B、92,2
C、93,2
D、93,2.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax2-4x+2,函數(shù)g(x)=(
1
3
f(x)
(1)若f(2-x)=f(2+x),求f(x)的解析式;
(2)若g(x)有最大值9,求a的值,并求出g(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=
sinx
2-cosx
,則f′(0)的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
OA
=(-2,m),
OB
,=(n,1),
OC
=(5,-1),若點A、B、C在同一條直線上,且m=2n,則m+n=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={1,2,3,…,99,100}
從A中任取三個元素的子集
 
個.
從A中任取三個元素相加,和為奇數(shù)的有
 
種.
從A中任取兩個元素相加,和是3的倍數(shù)有
 
種.
從A中任取兩個元素相加,和大于100的有
 
種.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

cos(-2040°)=( 。
A、
1
2
B、-
1
2
C、
3
2
D、-
3
2

查看答案和解析>>

同步練習冊答案