5.設(shè)函數(shù)f(x)=cosx+2sinx,則f′($\frac{π}{4}$)=( 。
A.-$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{2}}{2}$C.$\sqrt{2}$D.-$\sqrt{2}$

分析 求函數(shù)的導(dǎo)數(shù),利用代入法進(jìn)行求解即可.

解答 解:∵f(x)=cosx+2sinx,
∴f′(x)=-sinx+2cosx,
則f′($\frac{π}{4}$)=-sin$\frac{π}{4}$+2cos$\frac{π}{4}$=-$\frac{\sqrt{2}}{2}$+2×$\frac{\sqrt{2}}{2}$=$\frac{\sqrt{2}}{2}$,
故選:B

點(diǎn)評(píng) 本題主要考查函數(shù)的導(dǎo)數(shù)的計(jì)算,根據(jù)條件求函數(shù)的導(dǎo)數(shù)是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.從1,2,3,4,5,6這六個(gè)數(shù)中一次隨機(jī)地取2個(gè)數(shù),則所取2個(gè)數(shù)的和能被3整除的概率為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.從3男2女共5名學(xué)生中任選2人參加座談會(huì),則選出的2人恰好為1男1女的概率為$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知直線3x-2y=0與圓(x-m)2+y2=1相交,則正整數(shù)m的值為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若直線x-y=2被圓(x-a)2+y2=4所截得的弦長(zhǎng)為2$\sqrt{2}$,則正數(shù)a=( 。
A.4或0B.4C.$\sqrt{3}$D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果為( 。
A.10B.17C.24D.26

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知雙曲線M:$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{7}$=1的一個(gè)焦點(diǎn)是拋物線N:y2=2px(p>0)的焦點(diǎn)F.
(1)求拋物線N的標(biāo)準(zhǔn)方程;
(2)設(shè)雙曲線M的左右頂點(diǎn)為C,D,過F且與x軸垂直的直線與拋物線交于A,B兩點(diǎn),求$\overrightarrow{AC}$•$\overrightarrow{BD}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知向量$\overrightarrow{a}$=(2,1),$\overrightarrow$=(3,x)且$\overrightarrow{a}$•($\overrightarrow{a}$-2$\overrightarrow$)=0,則|3$\overrightarrow$|的值為(  )
A.$\sqrt{140}$B.$\frac{3}{2}\sqrt{85}$C.$\sqrt{120}$D.$\sqrt{110}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知函數(shù)f(x)=$\left\{\begin{array}{l}3x-13({x≥0})\\{2^x}({x<0})\end{array}$,則f[f(3)]的值為$\frac{1}{16}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案